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ABSTRACT

There are several well known harmonization and pitch correction
techniques that can be applied to monophonic sound sources. They
are based on automatic pitch detection and frequency shifting with-
out time stretching. In many applications it is desired to apply such
effects on the dominant melodic instrument of a polyphonic audio
mixture. However, applying them directly to the mixture results
in artifacts, and automatic pitch detection becomes unreliable. In
this paper we describe how a dominant melody separation method
based on spectral clustering of sinusoidal peaks can be used for
adaptive harmonization and pitch correction in mono polyphonic
audio mixtures. Motivating examples from a violin tutoring per-
spective as well as modifying the saxophone melody of an old jazz
mono recording are presented.

1. INTRODUCTION

Pitch correction and harmonization are some of the most common
digital audio manipulations. They are typically applied to record-
ings of monophonic sound sources such as the singing voice or
melodic instruments. Currently if the original monophonic sound
source is not available it is not possible to apply these effects
on polyphonic audio mixtures. The main problem is that the re-
quired frequency shifting is also applied to the accompaniment,
background music resulting in severe artifacts. In addition, pitch
correction and harmonization are adaptive effects that rely on the
output of an automatic pitch detection algorithm. In general pitch
detection of the dominant melody in polyphonic audio is much
harder than the monophonic case and in most cases unreliable.

In this paper we describe how a dominant melody separa-
tion algorithm inspired by ideas in Computational Auditory Scene
Analysis (CASA) can be utilized for applying pitch corrections
and harmonizations to the melody in polyphonic audio recordings.
Unlike systems that use stereo panning information [1] our focus
is mono recordings where there is a clear dominant melody such
as a violin with piano accompaniment or saxophone and trumpet
melodies in jazz recordings. The source separation algorithm is
based on a sinusoidal representation and a spectral clustering tech-
nique is used to group the peaks of the dominant melody. Perceptu-
ally informed grouping cues such as amplitude/frequency proxim-
ity and harmonicity are utilized. Pitch correction and harmoniza-
tion are straightforward to express using a sinusoidal representa-
tion by simple frequency scaling of the peaks. This assumes that
the underlying fundamental frequency of the dominant melody is
known. We utilize a pitch detection algorithm based on [2] and
show that it works better using the separated signals.

The remainder of the paper is structured as follows. The dom-
inant melody separation algorithm is described in section [2} Pitch
correction and harmonization are described in section Exper-
iments with a violin tutoring system and altering the saxophone
melody in a jazz recording are described in section 4 The paper
ends with conclusions and directions for future work.

2. SOUND SOURCE FORMATION

Computational Auditory Scene Analysis (CASA) systems aim at
identifying perceived sound sources (e.g. notes in the case of
music recordings) and grouping them into auditory streams using
psycho-acoustical cues [3]]. However, as remarked in [4] the prece-
dence rules and the relevance of each of those cues with respect to
a given practical task is hard to assess. Our goal is to provide a
flexible framework where these perceptual cues can be expressed
in terms of similarity between time-frequency components. The
identification task is then carried out by clustering components
which are close in the similarity space. Therefore, the complex-
ity of the algorithm is strongly related to the number of compo-
nents considered. In this paper we use time-varying sinusoids as
the underlying time-frequency representation.

2.1. Sinusoidal Modeling

Most CASA approaches consider auditory filterbanks and/or cor-
relograms as their front-end [3]. In these approaches the num-
ber of time-frequency components is relatively small. However
closely-spaced components within the same critical band are hard
to separate. Other approaches [4, |6, [7] consider the Fourier Spec-
trum as their front-end. In these approaches, in order to obtain
sufficient frequency resolution a large number of components is
required. Components within the same frequency region can be
pre-clustered together according to a stability criterion computed
using statistics over the considered region. However, this approach
has the drawback of introducing another clustering step, and opens
the issue of choosing the right descriptors for those pre-clusters.
Alternatively, a sinusoidal front-end is helpful to provide mean-
ingful and precise information about the auditory scene while con-
sidering only a limited number of components, see Figure 1, and
is the representation we consider in this work.

Sinusoidal modeling aims to represent a sound signal as a
sum of sinusoids characterized by amplitudes, frequencies, and
phases. A common approach is to segment the signal into succes-
sive frames of small duration so that the stationarity assumption is
met. For each frame a set of sinusoidal components is estimated.
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Figure 1: Picking of 20 peaks in the spectrum of a mixture of two
harmonic sources.

The discrete signal z* (n) at frame index k is then modeled as
follows:

l;k
2
mk(n) = ;af cos (Ft flk -n 4+ qﬁf) [€))

where F, is the sampling frequency and ¢F is the phase at the
beginning of the frame of the {-th component of L* sine waves.
The f; and a; are the frequency and the amplitude of the 1-th
sine wave, respectively, both of which are considered constant
within the frame. For each frame k, a set of sinusoidal parame-
ters S* = {pf,---, p’zk} is estimated. The system parameters
of this Short-Term Sinusoidal (STS) model S* are the L* triplets
p¥ = {fF,af, ¢F}, often called peaks.

These parameters can be efficiently estimated by picking some
local maxima from a Short-Term Fourier Transform (STFT) with
a frame size of 46ms and a hop size of 11ms. The precision of
these estimates is further improved using phase-based frequency
estimators which utilize the relationship between phases of suc-
cessive frames [8]. Using this enhanced frequency estimate, the
rough amplitude estimate provided by the magnitude of the local
maximum is also corrected.

2.2. Spectral Clustering

In order to simultaneously optimize partial tracking and source for-
mation, we construct a graph over the entire duration of the sound
mixture of interest. Unlike approaches based on local informa-
tion [9]], we utilize the global normalized cut criterion to partition
the graph (spectral clustering). This criterion as been successfully
used for image and video segmentation [10]. In our perspective,
each partition is a set of peaks that are grouped together such that
the similarity within the partition is maximized and the dissim-
ilarity between different partitions is maximized. By appropri-
ately defining the similarity between peaks, a variety of perceptual
grouping cues can be used.

To express such similarity, the edge weight connecting two
peaks pY and p}’ (k is the frame index and [ is the peak index) may
depend on the proximity of frequency, amplitude and harmonicity:

Wi o) =Wl pi) - Walpl, piy) - Walpl,pl) ()

where W, are typically radial basis functions of distance among
the two peaks in the x axis. For more details see [11}[12].
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Figure 2: Block-Diagram of the Dominant Melody Segregation Al-
gorithm.

Most existing approaches that apply the Ncut algorithm to au-
dio [13}[7]] consider the clustering of components over one analysis
frame only. However, the time integration (partial tracking) is as
important as the frequency one (source formation) and should be
carried out at the same time. We therefore propose in [12]] to con-
sider the sinusoidal components extracted within a texture window
of several spectral frames (20 in the experiments). Figure 2] shows
a block diagram of the proposed separation scheme.

We considered a maximum of 40 sinusoids per frame. Those
frames are 20 ms long. We chose to select two out of three clusters
of peaks for each texture window to perform the resynthesis. The
clusters with the highest average within similarity based on Equa-
tion [2]are selected. An example of separation is depicted in Figure
[l A bank of sinusoidal oscillators is used for resynthesis.

3. PITCH CORRECTION AND HARMONIZATION

Pitch correction and harmonization both rely on the ability to mod-
ify the perceived pitch of a sound without changing its duration
in time. For the sounds we are interested in, the pitch directly
corresponds to the fundamental frequency of the sound, therefore
we do not differentiate between pitch and fundamental frequency.
A sinusoidal representation is ideally suited for this purpose and
therefore most systems for pitch modification and harmonization
are based on the phasevocoder [14]. These effects work particu-
larly well for signals with slowly varying harmonic structure that
have small amounts of transients and background noise.

Using a sinusoidal representation, pitch shifting is achieved by
scaling the frequencies of each peak in the representation. In the
case of pitch correction we multiply the peaks corresponding to the
dominant melody and do not retain the original peaks. For harmo-
nization both the original and the multiplied peaks are retained for
resynthesis and multiple scaling factors are used to form chords.
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Figure 3: Example of Segregation of the Violin (b) from a Violin
accompanied by Piano.

3.1. Pitch Detection

In order to know the required amount of frequency scaling it is
necessary to know the underlying pitch of the sound during the
frame under consideration. To automatically determine the pitch
an implementation of the method described in [2]] was used. The
estimation of the pitch from a monophonic signal is a well studied
area and robust methods exist, see [5]] for a review.

We utilize the autocorrelation function to efficiently estimate
the fundamental frequency (f0). For a time signal s(n) that is
stationary, the autocorrelation 7, (7) as a function of the lag 7 is
defined as

t+N

ro(t) =1/N Z s(t)s(t+7) 3)

This function has a global maximum for 7 = 0. If there are
also additional global maxima, the signal is called periodic and
there exists a lag 79, the period, so that all these maxima are placed
at the lags no, for every integer n, with r5(n7o) = r4(0).

The inverse of the lag 7o provides an estimation of the funda-
mental frequency f0. The period is determined by scanning 7 (7),
starting at zero, and stopping at the first global maximum with non-
zero abscissa. Quadratic interpolation is used to further improve
the frequency estimation. In practical cases, the relative amplitude
of those maxima may change and some others maxima may ap-
pear due to small aperiodicities of the signal. The issue is then to
relevantly select which maximum corresponds to the f0 by consid-
ering several candidates under a plausible range and pick the one
with the highest confidence, see (2} for further references on

the algorithm. To avoid picking harmonics as the fundamental fre-
quency the amplitude of the peaks is weighted using the following
equation:

7s(7) = r(Tmaz) — OctaveCost® xlog(MinPitch* Tmaz) (4)

3.2. Note Segmentation

After the pitch contour has been generated we apply note seg-
mentation to convert the frequency values in Hz to floating-point
MIDI note numbers. The contour is scanned with a window size
of 500ms. If the median frequency value is sufficiently far away
from the previously detected notes (we found that 0.6 MIDI notes
produced good results), the sample is flagged as a note boundary.

Once we have divided the audio into notes, we compare the
pitches with the pitches given by a MIDI file. For each audio frame
inside each note, we compute

midi2H z(expected_pitch)
midi2 H z(detected_pitch)

frequency_multiplier = 5)

It would be desirable to previously estimate the tuning of the
performance. This way, if a different tuning standard (A = 442 Hz
instead of 440 Hz, for example) is desired, we can easily change
the mapping from Hz to floating-point values.

Currently, if a vibrato is present in the performance, the fre-
quency contour is linearized within each note. Removing any
micro-modulations of the pitch contour is desirable for correcting
the performances of inexperienced students. However, this is not
desirable for performances of skilled musicians who deliberately
produce such modulations (vibrato, glissandi, ... ).

3.3. Harmonization

Adding chords to a melody is a standard task in Computer Assisted
Composition (CAC) [16], but this generally requires an analysis of
the entire piece of music and is not suitable for online processing.
In some cases we can use simple online algorithms to add chords.
The easiest to automatically add harmonies is to have them pre-
computed by a human: “at 1.0 seconds, play a C chord. At 1.5
seconds, play a G7 chord, etc”. This requires that we know exactly
what pitch the user should be creating at every moment.

While this is unreasonable for an improvised performance of
contemporary computer music, there are still situations where this
constraint is quite valid. In music pedagogy, we often ask stu-
dents to play their instrument in time with a metronome — in other
words, to play specific notes at exactly the right time. This is also
true of karaoke — since we are playing a vocal-less version of the
music, we know what the user should be singing at every moment
of the song. In these cases, adding pre-composed harmonies based
purely on the elapsed time is an entirely appropriate method.

In this paper we use a simple and naive harmonization algo-
rithm as a proof-of-concept. Simple harmonies may be added by
examining only the current pitch. If we know that the user will
be playing a simple melody in a specific key, we can calculate the
scale degree of each note. “Scale degree” is the musical term for
number of semitones within the octave. Adequate — although not
particularly interesting — harmonies can be created by examining
only the scale degree. For this paper, we used this simple method
to demonstrate that harmonization is possible. More sophisticated
approaches can easily be added to the system but are beyond the
scope of this paper.
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violin solo  violin + piano  violin sep.
good intonation 97.9% 83.5% 93.1%
bad intonation 93.1% 79.9% 93.0%

Table 1: Comparison of pitch recognition for separated and non-
separated audio.

4. EXPERIMENTS

In order to demonstrate how our proposed systems works we show
examples from two application areas: pitch correction in music
pedagogy and modifying the saxophone melody in monophonic

jazz recordings. Audio examples can be found athttp://opihil.

cs.uvic.ca/Dafx2007/

Students learning instruments without fixed pitch (i.e. violin,
cello, trombone) spend a significant amount of time concentrat-
ing on their intonation. Music teachers may demonstrate sections
for the students, or encourage students to listen to recordings, but
the sound of an expert playing an expensive musical instrument
is quite different from the sound of a beginner playing a cheap
musical instrument. Students may compare their sound to the ex-
pert’s sound and become discouraged or distracted from the cur-
rent goal of correct intonation. On the other hand, playing the
correct melody using MIDI samples results in poor sound quality.

Using the student’s own sound avoids these problems: the stu-
dent hears music as it would sound if she played it with correct
intonation. This eliminates any doubt (or possible excuses) for the
student: the student listening to their pitch-corrected sound knows
that she should — and can — produce exactly the same sounds.
The audio examples are based on the following scenario: a violin
student practicing with a tutoring system with piano accompani-
ment. A standard laptop microphone is used for acquisition and
the recording is noisy. Various examples of pitch correction and
harmonization for this scenario can be found on the webpage.

We also achieved significantly better pitch detection (and there-
fore better note segmentation) by separating the dominant melody
from the original mixed audio. Table[T|shows our results; any pitch
that was within 1.0 MIDI note of the real value was deemed to be
“correct”.

Another example application is the pitch correction of melodies
in old mono recordings that are either live or for which the origi-
nal master tapes of the individual instruments are not available. In
the example provided on the webpage we modify the saxophone
melody of a well known jazz standard by pitch shifting certain
notes in the separated signal and then remixing with the residual.
The result sounds quite good and to some extent the resynthesis
artifacts are masked by the addition of the residual background.
We are currently working on improving the resynthesis quality.

5. CONCLUSIONS

Dominant melody separation using a spectral clustering approach
over a sinusoidal representation can be used for adaptive pitch cor-
rection and harmonization of polyphonic audio recordings.

Directions for future work include: incorporating more cues
into the peak similarity calculation, improving resynthesis by re-
ducing artifacts, more sophisticated harmonization, and adding the
pitch correction functionality to an open source audio editing en-
vironment such as Audacity.
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