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ABSTRACT

In this paper, we propose an original method to include spatial panning information when converting mono-
phonic recordings to stereophonic ones. Sound sources are first identified using perceptually motivated
clustering of spectral components. Correlations between these individual sources are then identified to build
a middle level representation of the analysed sound. This allows the user to define panning information for
major sound sources thus enhancing the stereophonic immersion quality of the resulting sound.

1. INTRODUCTION

The conversion of monophonic recordings to multi-
channel ones (upmixing) is important for several
tasks such as old recordings remastering or DVD
production. Some methods for mono-to-stereo up-
mixing proposed in the 50’s consider the whole sig-
nal and complementarily comb-filter the mono signal
for the two stereo channels. According to Schroeder
[1], a pseudo-stereophonic effect can be obtained this
way. Since then, a lot of work has been done to im-
prove this effect [2, 3].

More recently, stereo-to-5.1 upmixing methods have

been proposed in which selective re-panning of in-
dividual sound sources of the original recording is
applied. Most of these methods consider as in-
put a stereophonic recording and compute an inter-
channel coherence measure to identify sound sources
[4, 5]. In their method, the panning coefficients cor-
responding to the various individual sources are then
determined by measuring inter-channel similarity.

Dealing with monophonic recordings is much more
difficult, since no localization information is avail-
able to distinguish between different sound sources.
Monceaux [6] propose to segment soundtracks of



Lagrange et al. Up-mixing using Sound Source Formation

movies into music or voice segments based on ma-
chine learning algorithms. The proposed approach
allows then to selectively use different spatializer de-
pending on the type of segment. This approach can
hardly be applied to music recordings, since the voice
and musical instruments play together most of the
time.

Alternatively, we propose to consider a sound source
formation algorithm to identify which frequency
components should be re-panned together to pre-
serve the consistency of individual voices during the
up-mixing process. As stated before, no spatial in-
formation is available to achieve this task. Therefore
we consider continuity in time, harmonic relations in
frequency and amplitude similarity of the spectral
components to identify sound sources. Using the
approach proposed in [7, 8], those similarities are
computed for dominant frequency components of a
Fourier Transform within a texture window of sev-
eral frames thus providing both frequency and tem-
poral integration. Spectral clustering techniques are
then used to identify sound sources using a combi-
nation of these similarity measures.

This leads to an algorithm for sound source forma-
tion described in Section 2. The extracted sources
can be efficiently resynthetised and panned using
a Fourier based approach, described in Section 3.
Correlations between automatically detected time-
frequency clusters are identified in order to group
them into larger formations that likely correspond to
sound streams. Two types of correlations are stud-
ied. First, we describe how the difference between
the frequency ranges of different instruments can be
used to segregate between sources. We next pro-
pose to use timbral similarities between clusters to
achieve this task when instruments have the same
frequency range. Using this two methods, longer
time integration is achieved. In Section 4, some ex-
periments are presented to show the capabilities of
the proposed approaches for the upmixing of old jazz
recordings . Using this software, the user can easily
select sound sources and decides the panning level
to be applied to each source. For moderate levels of
panning the artifacts of sound source separation and
resynthesis are greatly reduced compared to the ar-
tifacts when listening to the extracted sources indi-
vidually. In the last section, we conclude and discuss
issues about the extension of the proposed method to
mono-to-5.1 upmixing and stereo-to-5.1 upmixing.
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Fig. 1: Picking of 20 peaks in the spectrum of a
mixture of two harmonic sources.

2. SOUND SOURCE FORMATION

Computational Auditory Scene Analysis (CASA)
systems aim at identifying perceived sound sources
(e.g. notes in the case of music recordings) and
grouping them into auditory streams using psycho-
acoustical cues [9]. However, as remarked in [10] the
precedence rules and the relevance of each of those
cues with respect to a given practical task is hard to
assess. We intend here to provide a flexible frame-
work where those perceptual cues can be expressed
in terms of similarity between time/frequency com-
ponents. The identification task is then carried out
by clustering components which are close in the sim-
ilarity space. Therefore, the complexity of the algo-
rithm is strongly related to the number of compo-
nents considered.

2.1. Sinusoidal Modeling

Most CASA approaches consider auditory filterbank
or correlogram as a front-end [11]. In this case, the
number of time/frequency components is relatively
small but closely-spaced components within the
same critical band can hardly be separated. Other
approaches [12, 13, 10, 14] consider the Fourier Spec-
trum. In this case, a sufficient frequency resolution
is required, which implies a high number of com-
ponents. Components within the same frequency
region can be pre-clustered together according to a

AES 122nd Convention, Vienna, Austria, 2007 May 5–8

Page 2 of 7



Lagrange et al. Up-mixing using Sound Source Formation

stability criterion of some statistics computed over
the considered region. However, this approach has
the drawback of introducing another clustering step,
and opens the issue of choosing the right descriptors
for those pre-clusters. Alternatively, a sinusoidal
front-end is helpful to provide meaningful and pre-
cise information about the auditory scene while con-
sidering only a limited number of components, see
Figure 1.

Sinusoidal modeling aims to represent a sound signal
as a sum of sinusoids characterized by amplitudes,
frequencies, and phases. A common approach is to
segment the signal into successive frames of small
duration so that the stationarity assumption is met.
The discrete signal xk(n) at frame index k is then
modeled as follows:

xk(n) =
Lk∑
l=1

ak
l cos

(
2π

Fs
fk

l · n + φk
l

)
(1)

where Fs is the sampling frequency and φk
l is the

phase at the beginning of the frame of the l-th
component of Lk sine waves. The fl and al are
the frequency and the amplitude of the l-th sine
wave, respectively, both of which are considered as
constant within the frame. For each frame k, a
set of sinusoidal parameters Sk = {pk

1 , · · · , pk
Lk} is

estimated. The system parameters of this Short-
Term Sinusoidal (STS) model Sk are the Lk triplets
pk

l = {fk
l , ak

l , φk
l }, often called peaks.

These parameters can be efficiently estimated by
picking some local maxima from a Short-Term
Fourier Transform (STFT) with a frame size of 46ms
and a hop size of 11ms. The precision of these es-
timates is further improved using phase-based fre-
quency estimators which utilize the relationship be-
tween phases of successive frames [15, 16]. Using this
enhanced frequency, the rough amplitude estimate
provided by the magnitude of the local maximum is
also corrected.

2.2. Normalized Cuts

In order to simultaneously optimize partial tracking
and source formation, we construct a graph over the
entire duration of the sound mixture of interest. Un-
like approaches based on local information [17], we
utilize the global normalized cut criterion to parti-
tion the graph. This criterion as been successfully
used for image and video segmentation [18]. In our
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Fig. 2: Labels assigned by the Ncut algorithm within
two different texture windows of six frames before
labeling alignment.

perspective, each partition is a set of peaks that are
grouped together such that the similarity within the
partition is minimized and the dissimilarity between
different partitions is maximized. The edge weight
connecting two peaks pk

l and pk′
l′ (k is the frame index

and l is the peak index) depends on the proximity
of frequency, amplitude and harmonicity:

W (pk
l , pk′

l′ ) = Wf (pk
l , pk′

l′ ) ·Wa(pk
l , pk′

l′ ) ·Wh(pk
l , pk′

l′ )

where Wx are typically radial basis functions of dis-
tance among the two peaks in the x axis, see [7, 8].

Most existing approaches that apply the Ncut al-
gorithm to audio [12, 14] consider the clustering of
components over one analysis frame only. However,
the time integration (partial tracking) is as impor-
tant as the frequency one (source formation) and
should be carried out at the same time. We therefore
propose in [8] to consider the sinusoidal components
extracted within a texture window of several spec-
tral frames (20 in the experiments). Those labels
are propagated to the next texture window using an
algorithm described in the next section.

2.3. Across-Texture Window Continuity

As discussed in [7], when using the normalized cut
approach, it is helpful to implement time continu-
ity between clusters over successive texture windows
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Texture window i
Texture window i+1

Fig. 3: The double labeling of the overlapping frame
is used to address the over-texture window continuity
issue.

(see Figure 2). Consequently, an overlapping frame
is used between each two successive texture windows
in order to achieve the desired time continuity (see
Figure 3). Within this frame, the peaks are labelled
twice; the first labelling comes from the previous
texture window and the second is the result of the
computation of the Ncut algorithm within the cur-
rent window. Following [12], we consider maximal
intersections between the two labellings in order to
derive correspondences between them. Namely, we
iteratively look in this intersection frame for the set
of peaks with the highest energy, belonging to a clus-
ter of peaks Cj

i in the previous window as well as to
another set, Ck

i+1, in the current window. Note that
those clusters are most likely labelled differently. If
those two clusters are judged as compatible, Ck

i+1 is
tagged with the label of Cj

i and those two clusters
are discarded. Otherwise only Cj

i , is discarded from
the iterative process.

The level of compatibility is computed as the ra-
tio between twice the cumulative amplitude of peaks
within the intersection set Cj

i ∩Ck
i+1 and the cumu-

lative amplitude of peaks within Cj
i ∪Ck

i+1. Only the
peaks of the overlapping frame are considered here.
With this algorithm, a sound source that spans sev-
eral texture windows can be identified as only one
cluster of peaks.

3. SOURCE RESYNTHESIS AND PANNING

In order to only resynthesize the selected sources, a
bank of sinusoidal oscillators can be used [19]. How-

Window FFT

Window IFFT
Left Channel

Monophonic
Sound Source

Right Channel Overlap
& Add

Panning
&

Volume

Fig. 4: Block-diagram of the FFT-based synthesis
and panning module.

ever, since we intend to pan the selected sources and
mix them with the background, this solution can not
be utilized due to the phase beating that the mixing
may induce. Alternatively, a Fourier based approach
is considered. For each analysed frame where a peak
of the selected source is present, the corresponding
mono signal is windowed using a Hanning window,
converted in the polar Fourier domain where the am-
plitude of each bin is selectively weighted according
to the volume and the panning parameters defined
by the user (see Figure 4).

For each peak, the frequency region of influence is
defined as the FFT bin interval where the peak is
dominant. This region is computed as follows. From
the closest bin location of the estimated frequency,
we look for the closest local magnitude minima in
the lower and the higher frequency vicinity. The
frequency location of those two minima defines the
boundaries of the region of influence. The set of
regions corresponding to a cluster forms a mask with
the following values:

ml(k, t) = g · (v · (1− p)) + (1− g)ml(k, t− 1)
mr(k, t) = g · (v · (1 + p)) + (1− g)mr(k, t− 1)

if k is inside a region of influence of a peak of a se-
lected cluster. The panning parameter p ∈ [−1, 1],
the overall volume v is defined by the user and
g ∈ [0, 1] is used for providing smooth changes of
the mask over time. We used a g = 0.8 in our ex-
periments. Figure 5 provides an example of an in-
stantaneous mask for the first harmonic source ex-
tracted from the mixture considered in Figure 2. To
achieve the selective synthesis and panning, the mag-
nitude spectrum is weighted by the mask before in-
verse FFT computation. An example of the evo-
lution along time of the mask for a piano signal is
shown in Figure 6.
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Fig. 5: Mask of one harmonic source resulting from
a mixture of two sources.

Fig. 6: Mask of a piano source.

4. DISCUSSION

This section discusses the use of the approach pro-
posed in this paper for the task of stereo upmix-
ing of old monophonic jazz recordings. For the ex-
periments and evaluation, we made use of the jazz
section of the RWC database [20] (mixed down to
mono by just using the left channel) and original
monophonic recordings of Lester Young and Duke
Ellington.

4.1. Resynthesis Quality

Compared to the sinusoidal oscillator approach, the
solution based on the inverse FFT allows a better
preservation of the brightness of the attack of piano
sounds and of the breathiness of instruments like the
flute. The low-pass filtering of the mask showed very
helpful avoiding magnitude discontinuities between
frequency bins of succeeding synthesis frames. How-
ever, in complex mixtures, some smearing effects in
the high frequency range still prevent the user from
using extreme panning values.

4.2. Graphical User Interface Application

Figure 7 depicts the graphic user interface (GUI)
developed for a prototype application which allows
easy interaction with the system. The GUI presents
a spectrogram plot of the audio signal under analy-
sis in the upper part of the window. The lower plot
presents the sound sources detected by the sound
formation algorithm. Each sound source is repre-
sented as a coloured cross, which spans both in time
and in frequency as an indication of the sound start
time and duration as well as its frequency width.
This representation provides a convenient way for
visualizing and modifying the auditory scene.

The user can easily select a sound event by click-
ing its corresponding cross, which will highlight the
sound’s partials in the spectrogram representation
and display additional information, such as start
time, duration, mean frequency, mean amplitude
and harmonicity level, among others. The user can
control both the volume and the panning of the se-
lected sound source, used for the resynthesis of the
stereo up-mix. This application was implemented
using Marsyas, a cross-platform, open source C++
software framework for audio analysis and synthesis
1.

1http://marsyas.sourceforge.net
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Fig. 7: Tentative display of the formed clusters.
The size and location of the crosses express the main
time and frequency features of the clusters.

4.3. Streams Formation

Any insights regarding similarity between clusters,
probably belonging to a same sound stream, are
most relevant for the task of semi-automatic pan-
ning. However, the formation of streams, namely
the clustering of sound sources that have been pro-
duced by the same instrument, is a difficult task [11].
We propose two ways to approach this problem. We
start by setting constraints on the frequency range
of the clusters so it becomes possible to isolate spe-
cific instruments, such as the bass line in a poly-
phonic music piece. Note that contrary to a filter-
ing approach, the frequency range of the segregated
streams can overlap significantly without any loss of
separability, as depicted in Figure 8.

In case of strongly overlapping frequency ranges, a
timbral-based clustering is used. A timbral template
is then assigned to each cluster, being defined as the
weighted histogram of the frequencies of the peaks
within that cluster. The weight is defined as the
amplitude of the peak. Once one cluster is selected
by the user, so will be all the other clusters with a
similar timbral template. This similarity is defined
as the cross-correlation between the two templates
and thresholded using a user defined parameter.

Our experiments demonstrated that the template
derived from a single source tends to be quite spe-
cific and consequently has a propensity to identify

Fig. 8: Frequency-based stream formation.

clusters in the same pitch range. An interesting ap-
proach to circumvent this overfitting would be to
iteratively update the timbral profile as we group
clusters: the algorithm would start with an initial
set of clusters defined by the user and then look for
highly similar ones. This new group of clusters could
now be merged to obtain a more generic template.
This template would be more relevant as a timbral
descriptor of the considered instrument. We look
forward to further investigate towards this direction,
planning to include prior knowledge about timbral
properties of instruments in the computation of clus-
ter similarity (or even peak similarity - see Equation
2).

5. CONCLUSION

In this paper we propose a new solution for the semi-
automatic mono to stereo panning. The presented
technique takes advantage of a new sound source
formation approach that is flexible and requires few
prior knowledge about the sound sources present in
the signal. As long as a source is not hard panned
to the left or to the right channels (which would cor-
respond to a sound source separation task), the re-
sulting artifacts will still allow a good quality mono
to stereo upmixing.

We plan to generalize this approach to the task of
upmixing from stereo to 5.1 recordings, where the
spatial location cues exploited in [4, 5] would al-
low defining an additional similarity cue useful for
a better segregation of sources located in the same
frequency range.
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