
Gesture analysis through a computer’s audio interface: The
Audio-Input Drum

by

Ben Nevile
B.Sc.(Hons), University of Manitoba, 1996

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF APPLIED SCIENCE (INTD)

in the Department of Interdisciplinary Studies

c© Ben Nevile, 2006
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part by
photocopy or other means, without the permission of the author.

Gesture analysis through a computer’s audio interface: The
Audio-Input Drum

by

Ben Nevile
B.Sc.(Hons), University of Manitoba, 1996

Supervisory Committee

Dr. Peter Driessen (Department of Electrical and Computer Engineering)
Co-Supervisor

Dr. W. Andrew Schloss (School of Music)
Co-Supervisor

Dr. George Tzanetakis (Department of Computer Science)
Outside Member

Examiners:

Dr. Peter Driessen, Co-Supervisor (Department of Electrical and Computer Engineering)

Dr. W. Andrew Schloss, Co-Supervisor (School of Music)

Dr. George Tzanetakis, Outside Member (Department of Computer Science)

Dr. Mantis Cheng, External Examiner (Department of Computer Science)

ABSTRACT

When people first started to use digital technology to generate music, they were thrilled

with their new ability to create novel and different sounds; accordingly, much research

effort has been directed towards rich and complex methods of sound synthesis. Unfortu-

nately the deep physical connection that exists between a musician and an instrument has

not received as much attention, and so although we have machines capable of synthesizing

fantastic new sounds, we don’t have the ability to use these sounds with any immediate fi-

nesse, of developing virtuosity with our new instruments. The work presented in this thesis

is an exciting step towards a more dynamic future for computer-based musical performance.

The Radio Drum was designed in 1987 at AT&T labs as a prototype of a three-dimensional

mouse. Max Mathews later repurposed the apparatus as a musical instrument known as the

Radio Baton, which in its most modern form outputs data using the MIDI protocol. The

result of this work, a new system called the Audio-Input Drum, provides high-resolution

gesture capture, a simplified apparatus, and access to the extremely flexible Max/MSP/Jitter

real-time software signal processing environment.

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Symbols xiv

Acknowledgement xv

1 Introduction - Motivation 1

2 Related and Previous Work 4

2.1 Leon Theremin and Capacitive Sensing 4

2.2 Relevant electronic drum research . 5

2.3 The Radio Drum and Radio Baton . 7

2.4 The Success of the Radio Drum . 13

3 The Audio-Input Radio Drum 16

3.1 Introduction . 16

3.2 Data Input in Computers . 18

3.3 The audio subsystem . 21

3.4 Signal Input Approaches . 25

3.4.1 The Rimas Box . 26

Table of Contents v

3.4.2 The Teabox . 28

3.4.3 The Chopper . 30

3.5 The Audio-Input Drum . 31

3.5.1 Demodulation . 34

4 Analyzing Gesture Data 40

4.1 Introduction . 40

4.2 Parameter Estimation . 42

4.2.1 Analysis of Noise . 42

4.2.2 Averaging Filters . 44

4.2.3 Height Estimation . 46

4.2.4 Planar Estimation . 51

4.3 Event Detection . 55

4.3.1 Introduction . 55

4.3.2 Detecting a hit . 58

4.3.3 Sequential Analysis . 64

4.3.4 wald˜ object implementation . 72

4.3.5 The full hit detection algorithm 78

4.4 Responding to Signal Triggers in Max/MSP 80

4.4.1 The event˜ object . 83

5 Future Audio-Input Gesture Work 88

5.1 Signal-to-noise . 88

5.2 Antennae Geometry and Positional Estimation 90

5.3 Visual feedback . 90

5.4 New Modes . 91

5.5 Non-artistic applications . 92

Bibliography 93

Table of Contents vi

Appendix A The Architecture of Max/MSP/Jitter 96

A.1 Objects . 97

A.2 Messages . 99

A.3 Signals . 101

A.4 Matrices . 102

A.5 The Threading Model . 102

Appendix B The Jitter Signal-Visualization Objects 108

Appendix C Sequential Analysis 111

C.1 Preliminaries . 111

C.2 The Sequential Probability Ratio Test . 112

Appendix D The wald˜ external 117

Appendix E Java Calibration Code 121

Appendix F The event˜ object 130

List of Figures

Figure 2.1 Max Mathews playing the Radio Baton in 1992. Photo by Patte Wood. 7

Figure 2.2 A diagram of an older version of the Radio Baton apparatus with

five distinct antenna surfaces. 8

Figure 2.3 The previous generation of Radio Drum apparatus. 9

Figure 2.4 Diagram of antenna surface of previous generation of Radio Drum

apparatus (from [1]). 9

Figure 2.5 A data flow diagram of the apparatus for the previous generation of

the Radio Drum. 10

Figure 2.6 The inside of the Black Box. 10

Figure 2.7 Illustration of the trigger and reset planes used by the Black Box to

detect hits. 11

Figure 2.8 Top of the antenna surface in the most recent version of the Radio

Baton. There are four distinct antenna surfaces, two of which are triangular

”backgammon” patterns and two of which are simple rectangular strips. . . 12

Figure 2.9 Illustration of the geometry of the four antennae in the newest ver-

sion of the Radio Baton. Horizontally the two rectangular areas vary in

width inversely from one another. 12

Figure 2.10 W. Andrew Schloss performing with the Radio Drum and a set of

foot pedals. 13

Figure 2.11 Promotional photo for David A. Jaffe and W. Andrew Schloss’s per-

formance of Wildlife. 14

Figure 3.1 The flow of information in developing virtuosity 17

List of Figures viii

Figure 3.2 The flow of signals that control software running in a computer . . . 18

Figure 3.3 Logical positioning of device drivers. Adapted from [31]. 19

Figure 3.4 A device driver has two components: the lower level that interacts

with hardware, and the API that is exposed to user software. 20

Figure 3.5 The flow of audio processing data. 22

Figure 3.6 Illustration of the computational flow of an audio perform method. . 23

Figure 3.7 An illustration of the 2n latency created by the input and output

buffering of audio vectors. 24

Figure 3.8 Audio spectrum vs. gesture spectrum 26

Figure 3.9 Data flow diagram of the apparatus using the Rimas Box. 27

Figure 3.10 The Teabox. 28

Figure 3.11 Data flow diagram of the apparatus using the Teabox. 29

Figure 3.12 Data flow diagram of the Radio Drum using the chopper multiplex-

ing circuit. 31

Figure 3.13 The transmitter and antenna system. 32

Figure 3.14 Illustration of the input spectrum. Two carrier frequencies must

be chosen far enough apart so that their bandwidths do not significantly

overlap. Bandpass filters are used to isolate the carriers from one another. . 33

Figure 3.15 Gain of the antenna (relative to maximum gain) versus the frequency

of the carrier. 35

Figure 3.16 Illustration of downsampling technique used for the Audio-Input

Drum. 36

Figure 3.17 Attenuation of the 26kHz and 30kHz bandpass filters implemented

in the Audio-Input Drum patch. 37

Figure 3.18 Gain of the 26kHz and 30kHz bandpass filters implemented in the

Audio-Input Drum patch. 38

Figure 4.1 Autocorrelation estimates for the noise in the eight signals. 43

List of Figures ix

Figure 4.2 Cross-correlation estimates for the noise in each of the eight signals

with the first signal (channel 1). 45

Figure 4.3 Gain of averaging filters of size n where n = 2, 3, 4, 5. 47

Figure 4.4 A point charge a height h above the surface of an infinite plane. . . . 48

Figure 4.5 The signal strength as a function of the stick’s z height above the

surface. 49

Figure 4.6 The signal strength as a function of the stick’s z height above the

surface, plotted logarithmically. The straight line fit through the last twelve

points has a slope of -2.049, indicating the inverse square relationship we

expect. 50

Figure 4.7 Bottom of the drum antenna surface 51

Figure 4.8 The signal strength for each of the four antennae as a function of the

stick’s x position above the surface. 53

Figure 4.9 The signal strength for each of the four antennae as a function of the

stick’s y position above the surface. 54

Figure 4.10 A realtime three dimensional plot of the x, y, and z position esti-

mates of the two sticks. The blue plane represents the drum surface and the

two ”snakes” trace out the position of the sticks as they are moved. This

display has been enormously helpful in some debugging situations. 56

Figure 4.11 Illustration of the hit detection technique used by the original Radio

Drum. If the trigger plane was crossed, the minimum of the estimated sig-

nal would trigger a hit. The depth of the hit (distance between the threshold

and the minimum) determined the estimated velocity of the hit. 59

Figure 4.12 Diagram of the hypothesis for the estimated z-position over time

for the situation where a ”duff” was reported by the original Radio Drum

apparatus. 60

List of Figures x

Figure 4.13 Illustration of the hit detection technique used by the Audio-Input

Drum. The maximum negative velocity is used to trigger a hit, but only if

the signal is below the z-threshold. The maximum negative velocity corre-

sponds to the estimated acceleration crossing above a = 0. The blue dotted

vertical lines highlight the minimum of a signal, and the corresponding

crossing of the zero line by its derivative signal. 61

Figure 4.14 An illustration of the input and output of a naive threshold test. The

solid area behind the curved signal flips upwards or downwards depending

on whether the signal is above or below the threshold. 62

Figure 4.15 Max patch featuring an MSP network that executes a naive threshold

test and uses Jitter to graph the results. Noise is added to a sine wave to

imitate a noisy signal. This signal is tested to see if it’s greater than zero.

True and false results are indicated by the background grey bar graph. . . . 63

Figure 4.16 An illustration of the input and output of a practical threshold test

with hysterisis thresholds above and below the threshold. The solid area

behind the curved signal flips upwards or downwards when the signal has

crossed the above or below threshold, respectively. 64

Figure 4.17 The same network as in figure 4.15 but with a thresh˜ object instead

of a naive >˜ object. 65

Figure 4.18 Illustration of the limitation of the practical threshold test presented

in Figure 4.16. The resolution of the detector is limited to values outside

the thresholds; although they may be uniformly on one side of the central

threshold, values in between the two outer thresholds do not trigger the

threshold detector one way or the other. 65

Figure 4.19 Illustration of accumulating a signal to detect the overall trend of a

signal value. 66

List of Figures xi

Figure 4.20 Flow of data in the sequential test of whether the input signal is be-

low a certain value. If the accumulated value of the input samples is either

bigger than the rejection threshold or less than the acceptance threshold, the

test is terminated. If the accumulated value lies in between these thresholds

the test continues. 67

Figure 4.21 Illustration of the various zones of the wald test. 68

Figure 4.22 An illustration of the sequential test procedure when testing if the

mean of a normal random variable is below a certain value. In this plot

θ0+θ1 < 0, so the slope of the two threshold lines is negative. If the sum of

successive samples exceeds the upper threshold the hypothesis is rejected;

if the sum falls below the lower threshold the hypothesis is accepted; while

the sum stays in between the two thresholds the test continues. 69

Figure 4.23 The operating characteristic of our Wald test. 71

Figure 4.24 Hysteresis involved in bidirectional acceleration tracker. When the

signal transitions from positive to negative or vice versa, the θ0 acceptance

threshold flips. θ1 = 0 always. 72

Figure 4.25 A plot of the wald˜ object data where a hit is detected. 74

Figure 4.26 A plot of the wald˜ object data where the sticks are motionless.

θ1 = 0 in this plot. The rejection threshold is quickly reached over and over. 75

Figure 4.27 A plot of the wald˜ object data where a hit is missed. The large

upwards acceleration in the left part of the plot is missed because the in-

coming samples am are about the same magnitude as the slope of the ac-

ceptance threshold thresha(m). With θ1 = 0, this slope is a good measure

of the sensitivity of the interface. 76

Figure 4.28 A plot of the z and velocity estimates. In this figure the pad has been

hit by the two sticks at roughly the same time. Note that the two plots are

not synchronized. 77

Figure 4.29 Logical flow chart of operations in the hit detection algorithm. . . . 79

List of Figures xii

Figure 4.30 Possible output from a signal-based event-detection algortihm: out-

put parameters as an event, as multiple signals, or as some combination of

event and signal data. 81

Figure 4.31 Triggering the adsr˜ object with event or signal data. 81

Figure 4.32 The difference between triggering a synthesis event with a sig-

nal and a message. The individual blocks are single samples, vertically

grouped in audio vectors. With a signal-based trigger, the output synthesis

begins synchronously with the event detection. With a message-based trig-

ger a message is placed in the queue, and output synthesis begins when the

queue is next serviced. 84

Figure 4.33 Making a random decision in the event and signal domains. 85

Figure 4.34 Transcoding from the signal domain to the message domain. When

a trigger is received the sah˜ objects sample the value of their parameters.

The next time the scheduler is serviced the edge˜ object sends out a bang

and the snapshot˜ objects send out the sampled parameter values as messages. 86

Figure 4.35 The event˜ object. This graph is very nearly functionally equivalent

to Figure 4.34, except that the event˜ object can deal with multiple events

in a single audio vector, whereas the sah˜-based solution of Figure 4.34 will

only output the last event in a vector. 87

Figure A.1 Max patch that adds twelve semitones (an octave) to all incoming

MIDI data . 98

Figure A.2 Max patch that pitches all incoming MIDI data up an octave 100

Figure A.3 An illustration of the usurp mechanism used in a Max patch. 105

Figure A.4 Time sequence of messages running through the patch in Figure A.3. 105

Figure A.5 An illustration of the execution flow in a Jitter object’s matrix pro-

cessing method. 106

Figure B.1 An example of the jit.catch˜ and jit.graph objects in action. 110

List of Figures xiii

Figure B.2 An example of using multiple jit.graph objects and the clearit and

outname attributes to composite multiple graphs and colors. 110

Figure C.1 An illustration of the sequential test procedure when testing if the

mean of a normal random variable is below a certain value. If the sum of

successive samples exceeds the upper threshold the hypothesis is rejected;

if the sum falls below the lower threshold the hypothesis is accepted; while

the sum stays in between the two thresholds the test continues. 115

List of Symbols

sA, sB, sC , sD: input signal value from the four antennae . 46

σ(x, y): surface charge density . 46

σ2
z : variance of the estimated z-height . 51

z: estimated z-height ofthe stick . 59

v: the vertical velocity of the stick . 59

a: the vertical acceleration of the stick . 59

θ: the signal’s true value . 64

θ0: lower boundary of the region of indifference . 64

θ1: upper boundary of the region of indifference . 64

α: probability of a miss . 66

β: probability of a false alarm .66

m: sample index in a sequential analysis test . 66

h1, h0: threshold intercepts . 70

thresha: acceptance threshold . 66

threshr: rejection threshold . 66

Eθ(n): expexted number of samples for test termination . 70

L(θ): the operating characteristic of the sequential test . 70

Acknowledgement

Thanks to everyone for their patience.

Chapter 1

Introduction - Motivation

”The stone age was marked by man’s clever use of crude tools; the information

age, to date, has been marked by man’s crude use of clever tools.” - Unknown

Computers have created a revolution in the world of music. When people first started

to use digital technology to generate sound, they were enamoured with their new ability

to create dramatically novel and different tones. No longer were they tied to the acoustic

properties of real objects in the physical world: digital signal processing provided them

with the tools to explore new sonic possibilities.

This was liberating for composers, but performers were for the most part left out of

the loop: the magical interaction between a musician and an instrument has been largely

set aside in computer music. Modern computing engines can be made to behave as pre-

dictably as physical systems, so it is therefore theoretically possible to develop a level

of virtuosity similar to that which a performer might achieve through hours of practice

with an acoustic instrument. The difficulty is one of interface; while a lot of attention

has been devoted to making computers capable of capturing, generating, and outputting

high-resolution sound data, not nearly as much energy has been devoted to the problem of

creating a high-resolution input for a performer’s gestures. It is the position of the author

that to fully appreciate the performance potential of a computer equipped with a modern

audio interface, the nature of the real-time input systems available to control musical pro-

cesses must be at least as resolved as the musical output. As David Zicarelli wrote in his

Computer Music Journal article, ”Communicating with Meaningless Numbers,”

1. Introduction - Motivation 2

There has ... been little discussion of the computational architecture and re-

sources necessary to support a situation in which the audio output might ac-

tually represent a reduction in the amount of data transmitted when compared

with the gestural input.

The work presented in this thesis aims towards this ”resolution gap” between input and

output technology.

The idea of gesture sensing using capacitive moments was exploited at Bell Labs by

R. Boie to create a prototype for a three-dimensional mouse [1]. The apparatus has gone

through many generations of development and many different forms, mostly under the

direction of Max Mathews. [2] Some versions of this apparatus are known as the Radio

Drum, and others as the Radio Baton. Chapter 2 includes a brief outline of work related to

digital musical interfaces, and describes the Radio Drum in more detail.

This work was motivated by the desire to improve several characteristics of the Radio

Drum and Radio Baton’s performance. The mechanism by which data is transmitted to the

computer, the MIDI protocol, is a serial communication scheme with a maximum data rate

of 31.25kbits/sec [3, 4]. The amount of information that can be sent over a MIDI connec-

tion is therefore small compared to the amount of data produced by a standard 16-bit, 44.1

kHz monoaural audio output channel. This limitation inherently limits the resolution of

the interface, both in terms of the sensitivity and timing of gestures. A lack of sensitivity

means that a performer using the Radio Drum has a limited range of dynamic expression.

Timing problems manifest themselves through a latency between the action of hitting the

surface of the drum and the resulting synthesis of sound and quantization in the possible

locations of events in time. In addition, a variable delay we’ll call synthesis jitter is a

function of the serial queue in which MIDI messages are processed by the computer. Our

new Audio-Input Drum system is more resolved than the original Radio Drum, and the

mechanism by which modern operating systems process audio is more immediate and reli-

able than the mechanism by which serial or MIDI messages are processed, resulting in less

synthesis jitter. Because of the amount of computational power necessary to carry out the

1. Introduction - Motivation 3

signal processing in software, this technique has really only become practical within the

last few years. In addition to these technical improvements, the apparatus of the Audio-

Input Drum is more compact, portable, and less expensive than the Radio Drum. Chapter

3 discusses the design of the Audio-Input Drum.

Another major drawback to the Radio Drum system is that the algorithms that process

the signals received by the antennae are implemented in hardware, which makes them very

difficult to modify. Moving this signal processing into the realm of computer software

simplifies the process of implementing new algorithms by an order of magnitude. Using

the flexible, rapid prototyping environment of Max/MSP/Jitter [5] to implement algorithms

for hit detection helped us to fix problems with velocity reporting that plagued the Radio

Drum. Performers using the Radio Drum frequently experienced duffing, a phenomenon

where a forceful drum hit would result in a small velocity being reported. By being able

to visualize and analyze the signals in software, a hypothesis was formed for the set of cir-

cumstances that resulted in duffing and a more robust hit-detection algorithm was designed

and implemented. Chapter 4 discusses the design of the gesture analysis algorithms used

in the Audio-Input Drum system.

The same flexibility that helps us to improve what the Radio Drum and Radio Baton

could already do also helps us to implement new modes of operation. For example, it was

easy to modify the software to simultaneously use both data created through hit detection

and continuous positional data. It was impossible to use these at the same time with previ-

ous generations of the interface. Chapter 5 discusses different potential modes of operation

for the Audio-Input Drum, as well as potential improvements to the interface and system it-

self in terms of resolution and performance. The future potential of the Audio-Input gesture

system is the most exciting part of this project.

Chapter 2

Related and Previous Work

In this chapter we briefly discuss some contributions to computer music interface design.

We then introduce the Radio Drum and review its various stages of development, as well

as highlight some artistic output that would not have been possible without this powerful

interface. But first, no summary of the history of this interface could be complete without

some discussion of the life of Léon Theremin, the grandfather of capacitive sensing.

2.1 Leon Theremin and Capacitive Sensing

Léon Theremin was a Russian inventor from Saint Petersburg most famous for his invention

of the Theremin in 1919, one of the first electronic musical instruments [6]. He toured Eu-

rope, performed with the New York Philharmonic, and patented his invention in 1929. In a

laboratory he set up in New York in the 1930s he experimented with other electronic instru-

ments, including the Rhythmicon [7]. In 1938 Theremin was seized by Soviet KGB agents

and forced to return to the Soviet Union. After a stint of forced hard labour, Theremin re-

turned to inventing an impressive array of devices, including the first covert listening device

to use passive electromagnetic induction to transmit an audio signal.

The theremin was unusual in that it was the first musical instrument designed to be

played without being touched. The instrument was originally the product of Russian

government-sponsored research into proximity sensors. Because of the timing of the com-

mercial release immediately prior to the Great Depression, the instrument was not a com-

2.2 Relevant electronic drum research 5

mercial success. However, dedication to the theremin persisted among enthuiasts such as

Robert Moog [8].

In performance a musician stands in front of the theremin and moves his hands in the

proximity of two metal antennas. The distance from one antenna determines the frequency

of the generated waveform, and the distance from the other controls its amplitude. Typically

the right hand controls the pitch and the left controls the volume, although some performers

reverse this arrangement. The theremin uses the mixing of two higher frequency signals

to generate a signal in the audio bandwidth. The instrument’s circuitry includes two radio

frequency oscillators, one which operates at a fixed frequency and one whose frequency is

modulated by the performer’s hand, which acts as the ground plate of a variable capacitor

in a tuned circuit. The difference between these two frequencies generates a beat frequency

in the audio bandwidth. The amplitude of the output frequency is controlled in a similar

manner, with the distance between the performer’s hand and the volume control antenna

determining a variable capacitor’s impedance, which regulates the theremin’s volume.

2.2 Relevant electronic drum research

Much of the crucial research in electronic percussion has been conducted by Max Math-

ews. [2] The Sequential Drum was a rectangular drum surface that sent four electrical

signals to a computer-synthesizer [9]. The four signals represented a trigger pulse that oc-

curred when the drum was hit, an amplitude signal proportional to how hard the drum was

hit, and x and y signals to encode the position of the hit. The drum got its name from the

synthesis engine’s method of advancing to the next element of a score every time the drum

is hit. Ostensibly this allowed the ”musician to focus specifically on aspects of interpreta-

tion rather than on a technically correct realization, which is handled automatically.” [9]

Later Mathews introduced the Daton, a rigid plate about 14 inches square and an inch

thick supported at its four corners by strain gauges [10]. These gauges generated electric

pulses when the plate was struck, and circuitry analyzed the amplitude of these pulses to

2.3 The Radio Drum and Radio Baton 6

compute both where and how hard the surface was hit.

Both the Sequential Drum and the Daton only sent information to the computer in re-

sponse to a drum hit. The Daton was introduced in the context of a conductor program that

simulates an orchestra following the baton of a conductor. To control continuous factors

such as the variation of amplitude or vibrato, a large joystick had to be added to the inter-

face. When the conductor program was adapted to use the Radio Baton, a version of the

instrument that is the subject of this thesis, the continuous control could be provided by the

three-dimensional tracking of the sticks, so the joystick was no longer needed. [11]

Many companies manufacture electronic drum kits based on piezoelectric technol-

ogy [12, 13]; piezo components are placed in contact with physical drum surfaces and

produce electrical signals in response to the vibration of the drum heads. In 1994 Korg in-

troduced the Wavedrum to the music market [14]. It is special in that it includes a synthesis

engine that uses physical modeling algorithms to produce sound based on the input of three

contact microphones that sit underneath the drumhead. The drum can output MIDI, but the

synthesis algorithms cannot be triggered by MIDI because they require more information

than the MIDI protocol can diirectly support.

In 1999, Emmanuel Fléty built a custom ultrasound-based solution for the tracking of

a percussionist’s gestures for Ronald Auzet [15, 16]. Motions within a cube of 70cm per

side could be tracked with a 5.5mm resolution at a sampling rate somewhere between 50

and 100 Hz, and data was communicated to synthesis software via the MIDI protocol.

The Marimba Lumina, designed by Don Buchla, is a marimba-like controller that uses

short range capacitive sensing to detect when and where different zones on the controller’s

surface have been hit [17]. It has an internal synthesizer, but also can use MIDI to commu-

nicate the event information to external synthesizers.

2.3 The Radio Drum and Radio Baton 7

Figure 2.1. Max Mathews playing the Radio Baton in 1992. Photo by Patte Wood.

2.3 The Radio Drum and Radio Baton

The idea of gesture sensing using capacitance was exploited at Bell Labs by R. Boie in 1987

to create a prototype for a three-dimensional mouse [1]. The apparatus was later repurposed

as a musical instrument by Max Mathews [18]. The apparatus has been known both as the

Radio Drum and the Radio Baton, depending on the generation of the design and who

you are talking to [11, 19, 20]. Drum sticks with wire coiled tightly around the tips are

driven at ”radio frequencies” - in the original apparatus the two carrier frequencies were

both in the range between 55 and 60 kHz. This driving potential induces a sympathetic

response in antennae contained in the flat surface of the drum.

The geometry of the antennae imprinted on the drum plane changed from generation to

generation of the interface. Figure 2.2 shows one version of the Radio Baton that featured

five different regions, four of which corresponded to edges of the drum surface and one

large square surface in the middle. Figure 2.8 shows the newest version of the Radio Baton

surface. Figure 2.9 illustrates the geometry of the four separate antennae on this newest

generation of the Baton.

2.3 The Radio Drum and Radio Baton 8

Figure 2.2. A diagram of an older version of the Radio Baton apparatus with five distinct

antenna surfaces.

For all geometries the main principle of the interface is consistent: the magnitude of

the signal induced is different for each region depending on the position of the transmitting

drum stick above the surface. These relative magnitudes are input into a formula based on

the geometry of the antenna, and can in this way be used to estimate the position of the

stick.

A data flow diagram of the apparatus for the previous generation of the Radio Drum

is presented in Figure 2.5. This version of apparatus processed the eight signals (four for

each stick) with a special hardware component that we called the Black Box. This was

in reference to the color of the hardware’s casing, but also was appropriate because it was

more or less a hardware device whose innards were not easily examined or altered. The

Black Box produced the driving signals for the sticks, took the antenna signals as input,

processed the information, and reported events out via a serial interface.

As illustrated in Figure 2.7, a simple two-plane thresholding algorithm was used by

the Black Box to detect when the surface of the drum had been hit: when the estimated z-

2.3 The Radio Drum and Radio Baton 9

Figure 2.3. The previous generation of Radio Drum apparatus.

Figure 2.4. Diagram of antenna surface of previous generation of Radio Drum apparatus

(from [1]).

2.3 The Radio Drum and Radio Baton 10

drum antennae

black box

computer

drum
stick

drum
stick

loudspeakersaudio
interface

serial/midi

Figure 2.5. A data flow diagram of the apparatus for the previous generation of the Radio

Drum.

Figure 2.6. The inside of the Black Box.

2.3 The Radio Drum and Radio Baton 11

trigger plane

reset plane

hit!

reset.

Figure 2.7. Illustration of the trigger and reset planes used by the Black Box to detect hits.

position of a drum stick fell below a trigger plane, the hardware would transmit a message

that the pad had been hit once it had detected that a minimum of the z-position was reached.

The Black Box would not output another hit until the drum stick rose above a reset plane;

this small hysteresis served as protection against multiple triggers due to a noisy signal.

The estimated force or velocity of the strike was estimated as a function of the depth of this

minimum z-position below the surface threshold.

Data from the Black Box could be transmitted in one of two modes: in continuous

mode the three-dimensional estimate of the position of each stick was sent to the computer

at a rate of 20Hz. In whack mode data was transmitted to the computer only when the

Black Box’s algorithm detected that one of the sticks has whacked the surface.

As we’ll see in Chapter 4, this previous generation of the Radio Drum had problems

estimating the forcefulness of a drum hit. It was felt that access to the raw signals coming

from the antennae could improve the sensitivity, resolution, latency characteristics, and

reliability of the interface, and unlock the potential of this fascinating instrument.

2.3 The Radio Drum and Radio Baton 12

Figure 2.8. Top of the antenna surface in the most recent version of the Radio Baton. There

are four distinct antenna surfaces, two of which are triangular ”backgammon” patterns

and two of which are simple rectangular strips.

Figure 2.9. Illustration of the geometry of the four antennae in the newest version of the

Radio Baton. Horizontally the two rectangular areas vary in width inversely from one

another.

2.4 The Success of the Radio Drum 13

Figure 2.10. W. Andrew Schloss performing with the Radio Drum and a set of foot pedals.

2.4 The Success of the Radio Drum

The Radio Drum has enjoyed significant success as performance interfaces. Andrew Schloss

and David Jaffe have worked together on several successful musical projects involving

the Radio Drum which have been performed all over the world. ”Wildlife”, an interac-

tive duo for Mathew/Boie Radio Drum and Zeta Violin, is available on CD from Centaur

Records [21]. In a fascinating demonstration of the interface’s potential to perform sound

not usually associated with a drum, Schloss and Jaffe created ”The Seven Wonders of the

Ancient World”, a concerto that coupled the Yamaha Disklavier Grand piano with the Ra-

dio Drum [22]. With its revving engines, ”Racing Against Time”, written by Jaffe and fea-

turing Schloss as the soloist, continued work on non-standard sounds controlled by drum

sticks. Through their experience with this decoupled instrument, Schloss and Jaffe have

many interesting ideas related to the relationship between performer, pre-recorded music,

and computer [20].

Schloss has produced work independently of Jaffe as well. In 2000, Schloss and Ran-

dall Jones produced ”UNI”, an interactive music and video performance that had its world

2.4 The Success of the Radio Drum 14

Figure 2.11. Promotional photo for David A. Jaffe and W. Andrew Schloss’s performance

of Wildlife.

2.4 The Success of the Radio Drum 15

premiere in Cuba [23]. In 2005 ”Blind Data,” an improvisational duet performed with the

estimable Cuban pianist Hilario Durán, was recorded at the NIME conference in Vancou-

ver [24].

Richard Boulanger has written and performed many pieces for the Radio Baton. Ra-

dio Sonata uses Max Mathews’ conductor program and a Yamaha TG77 synthesizer [25].

Grainstorm, a piece produced a couple of years later, uses a similar set of equipment and

also features a performer working with real-time video sequencing [26]. In 2003’s Stardust

the interface used by the video performer is dubbed the ”Video Baton” [27]. Many more of

his compositions are written about and available for download at Boulanger’s website [28].

Other contemporary uses for the apparatus continue to be explored. The Radio Baton

has been adapted for use as a DJ controller, using thimbles placed on the fingertips of

the performer rather than sticks [29]. The author of this thesis has performed with the

result of this thesis’s work, the Audio-Input Drum, at numerous festivals in several different

capacities: as a controller for video synthesis to accompany music; as a live sampling and

playback interface in a duo with wind player Andrew Pask; and as a loop capture and

playback interface with numerous DJs playing vinyl records.

Chapter 3

The Audio-Input Radio Drum

3.1 Introduction

Consider how humans have historically communicated musical performance data. Music

notation involves the placement of events - notes and rests - in a sequence. Each event has a

start-time, a duration, and if applicable, a pitch. The sequence is decorated with important

but subjective meta-data such as tempo and dynamic changes.

We can feed such data into a computer connected to a synthesis module, and the com-

puter can play the sequence back ”perfectly”. Indeed, a simple computer program will

produce the exact same sequence of sounds every time it is given the same musical score.

A human performer, however, will never give exactly the same performance twice. The

gestures that make up a performance are broadly controlled by the musical score, but what

makes each performance unique and alive is exactly what is not encoded in the music no-

tation - the thousands of minute details on top of and in between the events written in the

score.

In other words, the performer-instrument communication is better characterized by a

continuous engagement of control rather than by a few discrete events. Much work has been

done thinking about ways to classify, characterize, and parametrize musical gestures [30].

Perhaps the most basic way to define a gesture is to think of it as a form of communication

that extends beyond what can be accomplished verbally. We spontaneously gesture to one

another as we talk - with our hands, our eyes, our posture - and we do it naturally and

3.1 Introduction 17

instrumentperformer
gestures

sound

Figure 3.1. The flow of information in developing virtuosity

without conscious effort. The conversational gestural vocabulary may differ from culture

to culture, but its importance is universal.

Gestures that a musician makes when interacting with an instrument can be thought of

as a communication between performer and instrument: the performer interacts physically

with an interface, and the instrument responds with some output directly triggered by the

performer. Unlike the gestures made in person-to-person communication, which are de-

coded by subjective interpretation, artistic gestures are precisely interpreted by the state

and physics of the instrument. The reliable feedback loop that an artist is engaged in with

an interface allows the development of extremely fine gestural control; we can call the de-

velopment of such skill virtuosity. Figure 3.1 illustrates the flow of information necessary

to reinforce the creation of virtuosic skill.

Like a physical system, a computing engine behaves predictably, so it is therefore the-

oretically possible to develop virtuosity with a computer-enhanced instrument. Much re-

search has been devoted to what a computer can output: modern machines and algorithms

are capable of synthesizing sound and imagery that is rich and complex. However, the na-

ture of the real-time input that one can use to control these processes is much less resolved

in space and time than the output produced. As discussed in Chapter 1, we want to aim for

a situation where the audio output is actually a reduced amount of data compared to the in-

put that drives its synthesis. The work presented in this thesis aims towards this ”resolution

gap” between input and output technology. The Audio-Input Drum that’s presented in this

chapter is an adaptation of an older instrument with an improved, high-data rate gesture

3.2 Data Input in Computers 18

analog
input

signals

buffer

digital
input port buffer software

digital
output
port

analog to
digital

converter

Data capture hardware

Computer

Figure 3.2. The flow of signals that control software running in a computer

acquisition system.

3.2 Data Input in Computers

At the start of the project, the central question was how best to input the gesture data into

the computer. Modern computers have many possible ports of entry: ethernet, 802.11

wireless, IEEE 1394 firewire, USB, serial, and analog audio inputs come standard on many

commercially available machines.

Figure 3.2 shows the network of data flow that is used in the distribution of input sig-

nals to software. Some sort of analog signal is translated into digital information using

an analog-to-digital converter. The mechanism here will be different for every device: a

computer keyboard is a bank of switches whose analog signal will either be open or closed,

and older mice contained a ball that when rolled would in turn rotate two perpendicular

cylinders whose motion was translated into electrical signals. Since we live in a physical

3.2 Data Input in Computers 19

user space

kernel space

hardware

devices

rest of the operating system

serial port driver firewire driver USB driver

serial port
controller firewire controller USB controller

pic chip audio io
hardware mouse

user
software

user
software

user software

Figure 3.3. Logical positioning of device drivers. Adapted from [31].

world, our input will necessarily start out as an analog signal of some sort.

After the analog input signal has been translated into digital information, it is stored

in a buffer. At some time in the future it will be sent out via a digital output port into the

computer’s digital input port. The subsystem of the computer that controls the input port

will store the data into another buffer, and at some point in the future software will access

that buffer to retrieve the information.

Figure 3.3 may help explain why the buffers in Figure 3.2 are necessary. Modern oper-

ating systems separate user processes from the kernel processes. Input devices are handled

3.2 Data Input in Computers 20

user software api

hardware data management

user
software

input and
output ports

device driver

Figure 3.4. A device driver has two components: the lower level that interacts with hard-

ware, and the API that is exposed to user software.

through device drivers that are loaded and executed by the operating system kernel. These

drivers interact with the hardware controllers on their own schedule, independent of what-

ever user software may be running. User software has access to the device drivers only

through calls made through the operating system kernel. User software may use a kernel-

provided mechanism to poll a device driver periodically to retrieve any new data that has

arrived. The kernel therefore has to keep incoming data in a buffer, ready to be given to the

user process when it is requested.

We can think of device drivers as having two components, as illustrated in Figure 3.4.

3.3 The audio subsystem 21

The lower level interacts with the hardware: it understands the particular language that the

device speaks, and manages data coming in from and out to the device in buffers. The upper

level is the Application Programming Interface (API) that is presented to programmers of

user software. This API may include methods to get and send data from and to the device,

as well as methods to set and query the state of any attributes the device may have.

3.3 The audio subsystem

Figure 3.5 illustrates the flow of data when using the computer as part of an audio process-

ing network. The analog-to-digital converter in the audio hardware converts the analog in-

put signals to digital signals and places the results in a local buffer. The data is transported

to the computer using a digital protocol (firewire in this case), and once again buffered.

The user software accesses the data from this buffer, processes it, and places it in an output

buffer. The data is transported back to the same audio interface, and buffered one more

time before a digital-to-analog converter converts the data back to the analog domain.

Each of the buffering stages in Figure 3.5 adds to the total time it takes for an analog

signal to pass through the entire processing chain from input to output. We call this input-

to-output delay the round-trip latency of the audio-processing network. Because there are

many musical applications for which reducing this latency is highly desirable, much engi-

neering effort has been made by many independent companies developing audio hardware,

device drivers, and operating system schemes that optimize this data flow.

Unfortunately, like most things in engineering, there is a tradeoff to consider; in this

case the tradeoff is between efficiency and latency. To optimize the processing of audio in-

side the host software, audio drivers pass in blocks of audio data rather than single samples.

A typical audio vector might be 64 samples long; some drivers allow the size of the audio

vector to be set as low as 2 samples and as high as 4096 samples. The larger the block, the

more computationally efficient the audio processing will be. To understand why, we need

to examine the innards of an audio processing method.

3.3 The audio subsystem 22

analog
signals ADC DAC analog

signals

buffer buffer

firewire
output

firewire
input

buffer

software

buffer

firewire
output

firewire
input

audio device

computer

Figure 3.5. The flow of audio processing data.

3.3 The audio subsystem 23

process data

audio
input data

load code
and state
variables

save state
variables

audio
output data

data

data

Figure 3.6. Illustration of the computational flow of an audio perform method.

Figure 3.6 illustrates a simplified execution of what is called a perform method in an

audio DSP calculation. The process has three phases: first, any state variables associated

with the processing of the audio must be loaded from memory. For example, a method

performing biquadratic filtering on the audio would have to load the coefficients of the

filter and the feedforward and feedback sample values. We also conceptually include the

loading of all necessary machine instructions for the perform routine in this first phase,

although in reality the code will be loaded from RAM dynamically on an as-needed basis.

Once all state variables have been loaded, the actual processing of the data can take place:

this tight inner loop will iterate over all n samples of the input audio vector and place the

results into the output audio vector. Finally, the necessary state variables are saved. At this

point the output vector can be sent to the audio hardware for conversion to analog output,

or if the DSP calculating chain continues, it can be used as input for a subsequent perform

method.

The time taken to execute the loading and saving portions of the perform method is

independent of the audio vector size n - only the actual processing of the data varies with

n. We can model the execution time per sample ∆sample for a perform method with the

following formula:

∆sample =
∆RAM + ∆process(n)

n
=

∆RAM

n
+

∆process(n)

n
(3.1)

3.3 The audio subsystem 24

perform

time

current input

perform

time

2n

n

perform

time

computer

current output

t = 0 t = n t = 2n

Figure 3.7. An illustration of the 2n latency created by the input and output buffering of

audio vectors.

∆process(n) is a function of n that will be different for every signal processing routine.

Most simple DSP operations are linear with n; some exceptions, such as FFT processing

which varies as n log n, do exist, but typically the size of the analysis vector for such

operations is set independently of the audio vector size. ∆RAM in the first term of equation

3.1, however, is constant, so a larger n mortgages its cost over a larger number of samples

and decreases the execution time per sample ∆sample.

The tradeoff to this more efficient calculation per sample is that a larger audio vector

size n increases the latency of the system. Figure 3.7 illustrates this latency: when it is

input into the audio perform method in the center figure, the orange sample is already n

samples delayed from the current (blue) input sample because the audio software retrieves

a chunk of n samples. After the orange sample is processed and output in the right figure,

it is 2n samples behind the current (pink) input sample. Therefore the minimum latency of

the audio processing chain is 2n sample periods.

Modern operating systems such as Mac OS X or Windows XP have special optimized

3.4 Signal Input Approaches 25

callback methods for audio processing. Because reliability and timing are of critical impor-

tance, audio processing callbacks are executed in a high-priority thread. This is the same

importance we want to give our input gesture data; indeed, since our gesture data will be

intimately linked with resulting sound, it is prudent to leverage the same optimized mech-

anism designed for importing sound data to import gesture data. Keeping the processing

of the data and the resulting synthesis in the same computational thread can be of critical

importance in terms of timing and reliability.

3.4 Signal Input Approaches

The environment of choice for computer musicians is the Max/MSP/Jitter software pack-

age, a visual programming language focussed on real-time work. Max/MSP’s power lies in

the considerable functionality afforded by its vast graphical object-oriented framework that

facilitates the creation of art-generating algorithms. A computer-savvy, digital composer is

therefore no longer limited to the tones and physical performer-instrument practicalities of

traditional acoustic instruments, and can design virtually any sequence of sounds imagin-

able. A visual artist has a largely unexplored world at his fingertips. A broad overview and

details of the various scheduling mechanisms that operate in Max/MSP/Jitter are discussed

in Appendix A.

As we discussed in the previous section, for reasons of latency and reliability it is desir-

able to acquire and process the antenna signals using the audio subsystem of MSP. There is

much commerically available hardware designed to import audio signals, but our problem

is complicated by the fact that gesture signals have very different frequency content than

audio signals. Figure 3.8 illustrates this difference: gesture signals are in the baseband and

have a reasonably low upper bound; we can assume that they have an upper limit of 450 Hz,

the effective upper bound on the frequency of muscular contraction[32]. Audio signals, on

the other hand, do not have any content below a low frequency cutoff somewhere between

20 and 30 Hz. Most audio interfaces use a high-pass filter to help protect against DC offset

3.4 Signal Input Approaches 26

gesture audioaudio

frequency

amplitude

Figure 3.8. Audio spectrum vs. gesture spectrum

in the signal path; this is a problem for inputting the gesture data of a performer, who may

sometimes be motionless (ie, generate a signal at 0Hz).

Several solutions to this problem were tested; a brief outline of each follows. These

approaches are not presented in the chronological order in which they were tried, but rather

in decreasing order of implementation difficulty.

3.4.1 The Rimas Box

The most direct way to solve the problem of existing audio hardware not having the proper

specifications is to create your own audio hardware. A group of researchers at the Cen-

ter for New Music and Audio Technologies at the University of California Berkeley built

the Scalable Connectivity Processor (or Rimas Box) [33]. Along with AC-coupled audio

inputs, the Rimas Box has DC-coupled gesture inputs incorporated into its design. These

gesture inputs operate at one eighth the sample rate of the audio inputs.

Figure 3.9 illustrates the data flow of the radio drum when using the Rimas Box as the

mechanism to import gesture data. The black box provides driving signals to the sticks. A

signal is produced on the antennae via capacitive coupling, and fed back into the black box.

The black box demodulates the signals. The demodulated gesture signals are intercepted

from the multiplexing chip and input into the Rimas Box. The gesture data is received by

3.4 Signal Input Approaches 27

drum antennae Black Box Rimas box

computerdrum
stick

drum
stick

loudspeakers

ethernet

8 channels
of analog
gesture

data

Figure 3.9. Data flow diagram of the apparatus using the Rimas Box.

the software over ethernet, which interprets it and synthesizes sound. The software sends

the sound data to the audio interface, which translates from the digital to analog domains

and sends signals to the loudspeakers

Although the gesture signals were transmitted successfully, some problems with the

Rimas Box were identified. Most notably, the gesture inputs do not have proper anti-aliased

filters incorporated into their design. This has important negative consequences in terms of

the analysis of noise in the signal: without filtering out the frequencies above the Nyquist

cutoff, high-frequency noise aliases and contaminates the baseband.

The Rimas Box communicates with the computer using an ethernet connection. A min-

imum round-trip latency of more than 10 ms was measured; this is significantly longer

than is possible with modern commercially-available audio devices. Using the Rimas Box

requires a special kernel extension to be installed for Mac OS X; Windows and other op-

erating systems are not supported. Future updates to OS X could require updates to this

kernel extension. Modern operating system theory discourages the use of kernel extensions

since buggy software in the kernel can cause serious stability problems.

3.4 Signal Input Approaches 28

Figure 3.10. The Teabox.

Most importantly perhaps, the construction quality of the Rimas Box is lacking in terms

of durability. This is to be expected, for it is of course an experimental audio device and

not a commercial product ready for the market. However, it is worth mentioning because

it highlights an important drawback to using custom-built hardware. A system designed

around the Rimas Box will rely on fragile hardware and an up-to-date and bug-free kernel

extension.

3.4.2 The Teabox

The Teabox, built by Electrotap, ”piggybacks” gesture data through a regular sound card[34].

This small hardware box features multiple analog gesture inputs and multiplexes these into

a single digital stream of data in the S/PDIF format. The S/PDIF format is supported by

most manufacturers of professional sound cards, either with a coaxial or an optical input.

The multiplexed data from the Teabox is efficiently demultiplexed in software by a custom

external object for the Max/MSP environment. The sampling rate of the gesture inputs is

one tenth the CD 44.1kHz sampling rate.

Figure 3.11 illustrates the data flow of the apparatus using the Teabox. The Black Box

provides driving signals to the sticks. A signal is produced on the antennae via capacitive

3.4 Signal Input Approaches 29

drum antennae Black Box

Teabox

computer
drum
stick

drum
stick

loudspeakersaudio interface
SPDIF

firewire

Figure 3.11. Data flow diagram of the apparatus using the Teabox.

coupling, and fed back into the black box. The black box demodulates the signals. The

signals are intercepted from the multiplexing chip and input into the Teabox. The gesture

data is multiplexed into a single channel and sent to a SPDIF digital output. The audio

interface receives the SPDIF signal and sends the data to the computer. The gesture data is

received by the software, which interprets it and synthesizes sound. The software sends the

sound data to the audio interface, which translates from the digital to analog domains and

sends signals to the loudspeakers.

Although we have heard reports of other musicians are using this device successfully,

when attached to our apparatus we were never able to use the Teabox without intermittent

digital noise. The cause of these brief discontinuities in the signal was not determined.

Because the Teabox is not widely available, the same issues with custom hardware

discussed in section 3.4.1 exists, although in this case the device is available on the market

and is relatively inexpensive (about $350 USD), so it would be feasible to keep a second

unit handy in case of problems. The construction quality of the device is admirable.

3.4 Signal Input Approaches 30

3.4.3 The Chopper

The Chopper is a circuit that built at the University of Victoria to multiplex multiple ges-

ture signals in the analog domain. Each of the eight input gesture signals are amplitude

modulated, and the sum of the eight is passed in one channel of a analog audio input. In

the other channel of the analog input the eight unmodulated carrier frequencies are passed.

Once inside the computer individual bandpass filters separate the eight signals in each chan-

nel from one another. These filters were designed to precise specifications of width suitable

to pass the gesture bandwidth and strong, 90dB rejection outside this width, using iterative

methods [35]. After the filters have separated the signals, each modulated signal is demod-

ulated using the standard synchronous technique of multiplying it with its corresponding

unmodulated carrier wave and then lowpass filtering [36].

Figure 3.12 illustrates the data flow of the Radio Drum using the chopper multiplexing

circuit. The Black Box provides driving signals to the sticks. A signal is produced on the

antennae via capacitive coupling, and fed back into the Black Box. The Black Box demod-

ulates the signals. The signals are intercepted from the multiplexing chip and input into the

chopper. The chopper modulates the gesture signals at audio rates and multiplexes them

into two channels, the modulated signals and the carriers, and outputs them via a stereo

audio output. The audio interface receives the stereo signal and sends the data to the com-

puter. The multiplexed data is received by the software, which demodulates it, interprets

it and synthesizes sound. The software sends the sound data to the audio interface, which

translates from the digital to analog domains and sends signals to the loudspeakers.

This novel technique provided for multiple channels of low-frequency gesture data to

be passed through an inexpensive stereo sound input, the kind that comes standard with

virtually every computer sold today. The separation filtering in the demodulation software

adds several milliseconds of latency to the system. Multiple design iterations produced

a small, stable circuit board, but a sturdy enclosure was never built. Being custom hard-

ware, the same high-risk ”replaceability” issues that we talked about in section 3.4.1 exist

here as well. Additionally, the computational cost of the demodulation is not insignificant.

3.5 The Audio-Input Drum 31

drum antennae black box

chopper computerdrum
stick

drum
stick

loudspeakersaudio interface

8 analog
gesture
signals

2 analog
audio signals

Figure 3.12. Data flow diagram of the Radio Drum using the chopper multiplexing circuit.

However, since computational power is a resource that is boundlessly growing, efficiency

should not be todays primary consideration.

3.5 The Audio-Input Drum

One afternoon, the author was assembling the chopper-based apparatus. In a ”eureka!”

moment, we realized that the Black Box was completely unnecessary - the computer could

both generate the driving signals, and listen directly to the sympathetic response from the

antennae. This idea simplified the apparatus tremendously.

Figure 3.13 shows the basic outline of a transmitting and receiving system where the

audio interface provides a driving signal to a transmitting device. The potential caused by

this signal capacitively induces movement of charge on the surface of the antenna. The

antenna is connected to the input of the audio interface, so the computer ”listens” to the

output of the antenna. The output of the antenna is an amplitude modulated sinusoidal wave

3.5 The Audio-Input Drum 32

antenna

audio
interface computer

transmitter

induced capacitance

line level
analog carrier

4 analog

gesture

signals

Figure 3.13. The transmitter and antenna system.

with frequency of the driving signal plus noise. To extract the gesture signal it’s necessary

to demodulate the amplitude information from the carrier, and then filter to reduce the

noise.

In the case of the radio drum, each stick is driven with a different carrier frequency

signal and the signals from the four antenna channels are input into four separate audio

channels. The antenna signals are weak, so they are amplified before being digitized. Reg-

ular microphone preamplifiers that are built into some sound cards have proved suitable for

this task - the Fireface 800 used by the author provides 60dB of gain on each of its four

microphone preamplifiers [37].

The two driving carrier frequencies must be spaced far enough apart so that the side-

bands created by the movement of the sticks do not spectrally overlap; Figure 3.14 illus-

trates this idea. The spectral width of each sideband is dependent on the physical nature of

the interface. It is problematic to assume that the effective upper bound of the frequency of

3.5 The Audio-Input Drum 33

frequency

spectral pow
er

Figure 3.14. Illustration of the input spectrum. Two carrier frequencies must be chosen

far enough apart so that their bandwidths do not significantly overlap. Bandpass filters are

used to isolate the carriers from one another.

muscular contractions is the upper bound of a gesture signal’s frequency content, since the

physical nature of the interface may extend the frequency content above what the body’s

muscles can do on their own. For instance, a broadband spike would be the result if a

perfectly rigid drum stick were to hit a perfectly rigid surface and instantaneously stop.

The upper bound for the frequency content of the gesture signal must therefore be chosen

after careful observation of the characteristics of the physical system; in the case of our

interface, 450Hz has proven suitable as the upper bound.

We are of course limited to frequencies less than half of the audio output device’s max-

imum sampling rate, which on a modern audio interface can be as high as 192kHz. Figure

3.15 shows a plot of the antenna’s relative gain as a function of the driving frequency.

The vertical axis of the plot is in dB units and and is normalized relative to the maximum

receiving power around 60kHz.

Another factor in choosing carrier frequencies is that operating a signal-processing en-

vironment at high sampling rate is computationally demanding. Perhaps counter-intuitively,

this is not due to the actual calculating of the DSP chain, but is primarily due to the trans-

mission of data through the computer’s IO subsystems [31]. The author has enjoyed ef-

ficient and reliable performance when operating the audio device with a sampling rate of

3.5 The Audio-Input Drum 34

64kHz and generating carrier frequencies of 26 and 30kHz on modern hardware.

3.5.1 Demodulation

Since the carrier frequencies are generated internally in software, our implementation could

make use of any synchronous or asynchronous demodulation scheme to extract the ampli-

tude envelope from the modulated waveforms [36]. Figure 3.16 illustrates the computa-

tionally efficient method employed to move the amplitude envelope into the baseband. In

this scheme a naive downsampling of the signal is performed at a rate that exactly matches

an integer number of periods of the carrier signal in order to subsample on the carrier sine

wave peaks. This downsampling folds the carrier frequency to 0 Hz, and the bandpass fil-

ters that separated the carriers act as lowpass filters around the baseband. When operating

at a sample rate of fr and downsampling by a factor of n, the carrier frequencies must be

k(fr/n) where integer k satisfies 1 <= k <= (n/2) − 1. So for example at a sampling

rate of 64kHz and downsampling by a factor of 32, we can use carrier of 2k kHz, where

1 <= k <= 15. In Figure 3.16, k = 5. Carriers of 30kHz and 26kHz (k = 15 and 13) have

worked well for us. In Figure 3.16, exactly five periods of the sine wave fit within thirty-

two samples at the main sampling rate. The dots indicate the points that the sine wave is

sampled at the main sampling rate, and the larger circles indicate the points at which the

downsampling mechanism chooses a sample.

Each of the four input antenna signals contains an amplitude modulated sinusoidal car-

rier for each drum stick. The first stage in demodulation is to separate the two carriers using

bandpass filters. The ideal box filter for a given carrier would be centered at the frequency

of that carrier, and would be just wide enough to accommodate all of the gesture-generated

sidelobes without attenuation. The current version of the Audio-Input Drum patch uses

cascaded biquadratic bandpasses designed using MSP’s filtergraph object, and Figures 3.17

and 3.18 show the attenuation and gain, respectively, of the 26kHz and 30kHz filters.

The amplitude of the demodulated information is dependent on the phase of the input

carrier wave. Since the driving frequencies are generated in software, it’s possible to adjust

3.5 The Audio-Input Drum 35

0 1 2 3 4 5 6 7 8 9 10
x 104

!60

!50

!40

!30

!20

!10

0
Relative gain of antenna response vs frequency

Frequency (Hz)

R
el

at
iv

e
ga

in
 o

f a
nt

en
na

 re
sp

on
se

 (d
B)

Figure 3.15. Gain of the antenna (relative to maximum gain) versus the frequency of the

carrier.

3.5 The Audio-Input Drum 36

Figure 3.16. Illustration of downsampling technique used for the Audio-Input Drum.

3.5 The Audio-Input Drum 37

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0

20

40

60

80

100

120

140

160

180

200
Attenuation of 26kHz and 30kHz filters used in Audio Drum patch

Frequency (Hz)

At
te

nu
at

io
n

(d
B)

Figure 3.17. Attenuation of the 26kHz and 30kHz bandpass filters implemented in the

Audio-Input Drum patch.

3.5 The Audio-Input Drum 38

2.5 2.6 2.7 2.8 2.9 3 3.1
x 104

!70

!60

!50

!40

!30

!20

!10

0
Gain of 26kHz and 30kHz filters used in Audio Drum patch

Frequency (Hz)

G
ai

n
(d

B)

Figure 3.18. Gain of the 26kHz and 30kHz bandpass filters implemented in the Audio-

Input Drum patch.

3.5 The Audio-Input Drum 39

their phase so that the downsampled data is acquired at the zeniths of the sinusoidal waves

to maximize the signal-to-noise ratio of our instrument. In our implementation this is done

once by the user for each carrier and saved as an attribute of the patch.

In a noiseless environment the factors that limit the signal-to-noise ratio of the instru-

ment are the bit depth of our audio interface and the signal strength transmitted by the sticks

- currently a little more than 6 volts peak-to-peak. Of course we don’t live in a noiseless en-

vironment; in addition to broadband white noise, the antenna is sensitive to electromagnetic

interference from common sources such as 60Hz hum and radiating computer peripherals,

and less expected sources such as refrigerators and light bulbs. Identifying and dealing

with such sources of noise is important for achieving reliable operation with the interface.

Chapter 4

Analyzing Gesture Data

4.1 Introduction

Since the birth of the computer, the most often discussed factor in terms of accelerating our

culture has been the rapid increase in the speed of hardware. However, the most dramatic

increases in productivity have been because of shifts in the world of software. Indeed,

being able to store a program that provides automated execution of an arbitrary chain of

commands increased the productivity of the first computers by some thousands of per-

cent [38].

With the previous generations of Radio Drum and Radio Baton, reprogramming the

hardware in its native machine code was difficult enough that it was never done, even

though there have been important problems with the whack velocity estimation algorithm.

It was found that even with the original engineer’s full cooperation, rewriting the code

and burning a new PROM for the controller every time we wanted to try a new idea was

extremely cumbersome and limited our ability to develop the system. In a 1991 paper

”Communicating with Meaningless Numbers”, David Zicarelli proposed that gesture anal-

ysis algorithms be liberated from hardware [39]:

As an illustration of why gesture analysis is best considered an element of

the overall control exercised by the CPU, it should be noted that Max Math-

ews didn’t devise his notion of the reset plane and trigger plane for extracting

hits from the radio drum until he bypassed the microcontroller that turned the

4.1 Introduction 41

drum’s signals into serial data and digitized the analog signals directly on his

PC host computer. He then used the analog-to-digital converter card’s DMA

capability to transfer the signals directly into the PC’s memory, where he had

complete control over how they should be interpreted. Given the direct access

to the continuous gesture, and a scheme fast enough to use the data for rudi-

mentary analysis, other people could invent their own schemes for extracting

features such as hits from the drum.

The Audio-Input Drum realizes Zicarelli’s vision of having the gesture signals pro-

cessed with algorithms implemented in high-level software. The barrier to entry for repro-

gramming the system is much lower, changes are able to be made rapidly, and the result is

a more capable system that can more easily adapt to present and future needs.

At the end of the day we wish to respond to the gestures with some sort of synthesis -

sound, image, or some other form of output. To respond with a wide-ranging and consistent

synthesis, it’s important to accurately estimate the relevant parameters of our input signal.

Estimation is made complicated by the inevitable presence of noise in the signal.

Beyond estimating parameters of the gestures, we may want to be able to extract gestu-

ral events from the continuous flow of data. This chapter discusses the definition of events

within the context of the gestural parameters, the designing of tests to detect such events,

and the statistical determination of the likelihood of test errors. When analyzing such er-

rors in an engineering context we can consider the classic probabilities of a miss and a false

alarm. We’ll do our best to reduce both of these probabilities, although it’s impossible to

simultaneously minimize both. A related idea is the fact that we must pick a point in the

tradeoff between latency and sensitivity, which is also linked to the probabilities of failure.

The nature of statistical analysis intrinsically links all these test qualities. The final section

of the chapter discussed some details related to the practicalities of triggering synthesis

from signal events in the Max/MSP environment, including the creation of the new event˜

object to make convenient the transition between the signal and message worlds.

4.2 Parameter Estimation 42

4.2 Parameter Estimation

With the capture of analog signals comes the inevitable fact of life that the data that we

import into our application will always be corrupted by noise. We can model a stationary

input signal as

xj = sj + nj (4.1)

where sj and nj are the signal and noise for sample j, respectively.

4.2.1 Analysis of Noise

We can characterize this noise by examining an estimate of its autocorrelation function.

Data was recorded with both sticks sitting motionless on the surface of the drum. Figure

4.1 contains eight plots, each of which is an autocorrelation estimate for one of the eight

signals, with DC offset removed, using the following formula:

RN(k) =
1

N

N−|k|−1∑
i=0

xixi+|k| (4.2)

where the lag k in these estimates ranges from 0 to 200 (0 to 100 ms at the sampling rate

of 64kHz downsampled by a factor of 32: 2kHz). This sample autocorrelation function

is asymptotically unbiased when N , the number of samples, is large compared to the lag

k [40]. In the data that generated these plots, N = 33801. A white signal has R(k) = 0

for k 6= 0; none of these plots matches that description precisely, but in general they have

”whiteish” behaviour, with a large spike around k = 0 and tapering off towards zero as |k|

gets larger.

The cross-correlation estimates shown in Figure 4.2 are helpful for evaluating the inde-

pendence of the noise in each channel. Since there are eight channels, 7+6+5+4+3+2 =

27 total cross-correlations could be examined. In Figure 4.2 we show only the 7 that involve

channel 1, as well as its own autocorrelation. It’s clear that the noise in a given channel will

have more in common with some channels than others; the plot for channels 1 and 3 shows

4.2 Parameter Estimation 43

!200 !100 0 100 200
!1

0

1
x 10!8 Channel 1

!200 !100 0 100 200
0

1

2
x 10!8 Channel 2

!200 !100 0 100 200
0

0.5

1
x 10!8 Channel 3

!200 !100 0 100 200
0

0.5

1
x 10!8 Channel 4

!200 !100 0 100 200
!5

0

5
x 10!8 Channel 5

!200 !100 0 100 200
!5

0

5
x 10!8 Channel 6

!200 !100 0 100 200
!5

0

5
x 10!8 Channel 7

!200 !100 0 100 200
!2

0

2
x 10!8 Channel 8

Figure 4.1. Autocorrelation estimates for the noise in the eight signals.

4.2 Parameter Estimation 44

a strong connection at the R1,3(0) point, whereas the plot for channels 1 and 4 shows less

of a bond, and the plots involving channels 5 through 8 even less still.

Strictly speaking, Figures 4.1 and 4.2 reveal that the noise is not zero-mean gaussian

noise, and that the noises are not strictly independent from one another. Future research

may be able to better characterize the noise and use it to improve each signal’s estimate. In

the meantime, for the purposes of our analysis we will still choose to make the simplifying

assumptions of independent, zero-mean gaussian noises.

4.2.2 Averaging Filters

One way to reduce the effect of noise in the estimate of a signal is to use multiple values.

Averaging n successive samples of a stationary signal corrupted with zero-mean gaussian

noise reduces the variance in an estimate by a factor of n. However, we cannot reasonably

assume that our signal is stationary. It could be reasonable to think of the signal as locally

stationary if the sample rate of the gesture signal is significantly higher than the maximum

gesture frequency. In the case of our implementation of the Audio-Input Drum, downsam-

pling a 64 kHz signal by a factor of 32 leaves us with a 2 kHz data rate. This is only a

little more than four times our maximum assumed gesture signal frequency of 450 Hz, so

an assumption of stationarity is questionable.

A more visible way to think about the effect of such an averaging is to think of the

averaging process as a filter. Figure 4.3 contains plots of the gain of filters that result from

averaging 2, 3, 4, and 5 samples. As expected the frequency of the first lobe of the filter

decreases with increasing n. However, the sidelobes, which reach as high as -10 dB in the

case of n = 3, make the rejection characteristics poor. Compare Figure 4.3 with Figure

3.17 and it’s obvious that the averaging filters are crude compared even with the filters

that are possible even with simple biquadratic forms. We could achieve a more optimal

noise-power reduction by designing a special IIR lowpass filter. Furthermore, because of

the frequency shift that happens in the synchronous downsampling, this lowpass filtering

can effectively be accomplished in our bandpass filtering of the original 64 kHz amplitude

4.2 Parameter Estimation 45

!200 !100 0 100 200
!1

0

1
x 10!8 Channels 1 and 1

!200 !100 0 100 200
!2

!1

0
x 10!9 Channels 1 and 2

!200 !100 0 100 200
!1

0

1
x 10!9 Channels 1 and 3

!200 !100 0 100 200
!1

0

1
x 10!9 Channels 1 and 4

!200 !100 0 100 200
!5

0

5
x 10!10 Channels 1 and 5

!200 !100 0 100 200
!5

0

5
x 10!10 Channels 1 and 6

!200 !100 0 100 200
!5

0

5
x 10!10 Channels 1 and 7

!200 !100 0 100 200
!5

0

5
x 10!10 Channels 1 and 8

Figure 4.2. Cross-correlation estimates for the noise in each of the eight signals with the

first signal (channel 1).

4.2 Parameter Estimation 46

modulated waveforms.

4.2.3 Height Estimation

The printed circuit board that serves as the antenna for the Audio-Input Drum is actually

made up of four separate regions; section 4.2.4 discusses the geometry of these regions in

detail. These four regions are useful primarily for estimating position in the two planar

dimensions, but for estimating the vertical height of the stick above the surface we can

treat the surface as a single planar antenna by adding the contributions of the four separate

antennae together. That is,

s = sA + sB + sC + sD (4.3)

where sA, sB, sC and sD are the signal values from the four individual antennae.

When a stick is close to the drum surface we can make the simplifying assumption that

the antenna plane stretches infinitely in all directions. Consider a frame of reference with

the stick’s x and y position being the origin, the z = 0 plane as the antenna surface, and

the transmitting stick a height z above the antenna, as shown in Figure 4.4. The induced

charge density on the antenna surface as a function of x and y is

σ(x, y) =
−qz

2π(x2 + y2 + z2)3/2
(4.4)

where we are treating the stick as a point charge of magnitude q [41]. Figure 4.5 is a plot

of the received signal strength versus the height of the drum stick above the center of the

small 10 inch by 11.5 inch antenna surface. Figure 4.6 is the same plot with both axes

logarithmically scaled. We might expect an inverse-square relationship from the form of

equation 4.4, and we can test for this by using the collected data in the logarithmic scale.

If the relationship between the signal strength s and the height z is

4.2 Parameter Estimation 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!50

!45

!40

!35

!30

!25

!20

!15

!10

!5

0
Gain of averaging filters of size n where n = 2, 3, 4, 5

Frequency/pi (radians)

G
ai

n
(d

B)

Figure 4.3. Gain of averaging filters of size n where n = 2, 3, 4, 5.

4.2 Parameter Estimation 48

y

x

z

Figure 4.4. A point charge a height h above the surface of an infinite plane.

s = c1z
c2 (4.5)

where c1 and c2 are unknown constants, then taking the logarithm of both sides yields

log s = log c1 + c2 log z (4.6)

This expresses a linear relationship between the two variables log s and log z. An exami-

nation of the log-scale plot in Figure 4.6 shows that the behaviour of this logarithmically-

scaled signal strength is not linear when the stick is close to the surface. However, the

straight line in Figure 4.6 is the result of a linear fit with the last twelve points of data

taken, which range from 21.2 cm to 100.9 cm. The slope of this line is c2 = −2.049, which

is consistent with our expectation of an inverse-square relationship.

The fact that the inverse-square relationship does not hold at small distances makes

precise vertical tracking difficult. Future research could aim at modeling the field-space

of the rectangular antenna more accurately and perhaps tracking the position of the sticks

precisely, but there are many complicating factors, including the asymmetry of the trans-

mitting sticks, influence of one stick’s electric field on the other’s, and the influence of

other conductors in the area, such as the body of the performer. For the purposes of our

work it is not necessary to precisely estimate the cartesian position of the stick. It is only

4.2 Parameter Estimation 49

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Signal strength versus z height of stick

Height (cm)

Si
gn

al
 s

tre
ng

th
 (n

or
m

al
ize

d)

Figure 4.5. The signal strength as a function of the stick’s z height above the surface.

4.2 Parameter Estimation 50

10!1 100 101 102 103
10!3

10!2

10!1

100
Signal strength versus z height of stick ! logarithmic

Height (cm)

Si
gn

al
 S

tre
ng

th
 (n

or
m

al
iz

ed
)

Figure 4.6. The signal strength as a function of the stick’s z height above the surface,

plotted logarithmically. The straight line fit through the last twelve points has a slope of

-2.049, indicating the inverse square relationship we expect.

4.2 Parameter Estimation 51

Figure 4.7. Bottom of the drum antenna surface

important that the strength of the received signal monotonically increases as the distance

from the stick to the antenna decreases. We can therefore track the height of a stick simply

with the sum of the four antennae values. ie,

ẑ = sA + sB + sC + sD (4.7)

If each of sA, sB, sC , and sD is an independent random variable with gaussian noise,

the sum sA + sB + sC + sD is a random variable with gaussian noise. If the four signals

have identical variance σ2
s , the variance of this sum will be σ2

z = 4σ2
s .

4.2.4 Planar Estimation

Figures 2.8 and 4.7 show the top and bottom, respectively, of the circuit board that serves

as the Audio-Input Drum’s antenna. This is the same antenna that is used in the most

4.2 Parameter Estimation 52

recent version of the Mathews Radio Baton. Figure 2.9 illustrates the four distinct regions

of the antenna that are intended to operate in pairs: two of the regions are used to estimate

position in the x dimension, and the other two to estimate position in the y dimension. The

x estimating pair is made up of vertical bars of varying thickness: the thickness of the bars

for one antenna increases with increasing x, whereas for the other antenna the thickness

decreases with increasing x. The y estimating pair are made up of long, thin triangular

wedges that sit with their bases on opposite edges of the circuit board. The effect of these

positioning of these regions is that the received signal strength for each of the antennae

is strongly associated with a different edge of the circuit board. Previous versions of the

Radio Drum and Radio Baton have featured different geometries for these antenna regions;

the original Radio Drum, for instance, featured a strictly ”backgammon” pattern with four

regions that had signal strengths associated to the four corners of the antenna surface.

Although we do not need to know precisely the z-height of a stick to make use of it for

musical purposes, it is more important that we have an accurate way to detect the x and y

position of a drum stick. A common performance mode is to map drum hits at different

parts on the drum’s surface to different musical processes. Figures 4.8 and 4.9 show the

signal strength as a function of motion in the x and y dimensions, respectively. For both

the z height was less than a centimeter. In each case, two of the signals remain roughly

constant, while the other two linearly increase and decrease, crossing somewhere in the

middle. These figures show that each of the four signals corresponds to a different edge of

the drum, and that near the center of the antenna the change in the signal strength is linear

with the position.

We can therefore estimate the x and y position of a stick as follows: let sA and sB be

the signals induced on the pair of antennae responsible for the estimation of either the x

or the y transmitter position. The relative position pAB between the A and B edges can be

estimated with the following formula:

pAB =
sA

sA + sB

(4.8)

4.2 Parameter Estimation 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Signal strength versus x position of stick

y position of stick (normalized)

sig
na

l s
tre

ng
th

 (n
or

m
al

ize
d)

Figure 4.8. The signal strength for each of the four antennae as a function of the stick’s x

position above the surface.

4.2 Parameter Estimation 54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Signal strength versus y position of stick

y position of stick (normalized)

sig
na

l s
tre

ng
th

 (n
or

m
al

ize
d)

Figure 4.9. The signal strength for each of the four antennae as a function of the stick’s y

position above the surface.

4.3 Event Detection 55

This formula uses the linear nature of the two opposing signals, and its ratio formulation

allows for a change in vertical position that will gain each antenna’s response equally. To

use the estimate effectively we subsequently rescale the output of this ratio to the desired

range, eg 0 to 1 or -1 to 1. As is obvious from Figures 4.8 and 4.9, this simple model is

unusable near the edges of the drum surface.

A random variable formed from the ratio of two independent gaussian random variables

is a Cauchy random variable. In 1979, Hodgson wrote a paper about what has since come

to be known as Hodgson’s paradox [42]. The paradox is that the ratio of two normally

distributed random variables has neither a mean nor a variance, and therefore no well-

defined expectation of behaviour. In real life no random variable is exactly Gaussian, so

the paradox is never truly realized. In our case, sA and sA + sB are clearly not independent

variables, so the situation is further complicated. The further away the sticks are from the

surface, the larger the components of noise relative to the signals in sA and sB, and so the

x and y estimation quickly becomes useless. Luckily for our primary application, deciding

where on the surface the drum has been hit, the signal-to-noise ratio is at its zenith.

Figure 4.10 shows a three-dimensional plot that renders in real time while the Audio-

Input Drum software is running. The blue plane represents the drum surface and the two

”snakes” trace out the position of the sticks as they are moved. Every estimated position

that the sticks pass through is rendered, which makes this display enormously helpful in

some debugging situations.

4.3 Event Detection

4.3.1 Introduction

The concept of an event is a powerful artistic tool. Consider the western system for no-

tating music: each note is an event, and the horizontal dimension represents time so that

a sequence of events is defined by the horizontal orientation of notes arranged on the mu-

4.3 Event Detection 56

Figure 4.10. A realtime three dimensional plot of the x, y, and z position estimates of the

two sticks. The blue plane represents the drum surface and the two ”snakes” trace out the

position of the sticks as they are moved. This display has been enormously helpful in some

debugging situations.

4.3 Event Detection 57

sical staff. Data for the pitch and duration of the note is encoded in the vertical position

and shape of the note, respectively. The intended character of the notes can be further

influenced by expression and dynamics markings.

The MIDI file format takes a slightly different approach to representing most of this

same information. Instead of a note having a start time and a duration, in MIDI there

is only the concept of ”note on” and ”note off”. This encoding works fairly well when

recording the information from a performer playing a piano keyboard. Unlike musical

notation, in which the dynamics of the notes are implied by superannotations and left up to

the interpretation of the performer, a MIDI file also associates a 7-bit ”velocity” value with

each note to represent the force with which the note is played.

While a MIDI file can do a reasonable job of representing a piano keyboard’s possibil-

ities, for many other instruments the MIDI protocol could not do an adequate job of cap-

turing all the nuances of performance [43]. Consider the violin, whose pitch and amplitude

components of performance are both continuous variables. Although we could logically

consider the entire motion of fingering a steady pitch and bowing steadily across a string

as an event, to encode the intricate complexities of the violin’s interface with any simple,

concise event-based grammar would be difficult. It is in this way that our highly resolved

gesture signals will help us create rich instruments: rather than try to represent an interface

via the paradigm of a simplified piano as the MIDI protocol does, we instead capture as

many of the subtle nuances of a continuous gesture as we can inside the constraints of the

sample rate and bit depth of our data signal.

So in the context of the above discussion it is tempting to propose that we do away with

the notion of a musical ”event” entirely. But an event is still a useful concept in terms of

organizing the output synthesis. For instance, if we were attempting to emulate a violin,

one type of event we would want to detect would be the contact of the bow with the strings.

The end of this gestural event could be defined as the time at which the bow and the strings

separate. In the case of the Audio-Input Drum, we of course would like to know when

the surface of the drum has been hit. However, more complicated analysis is possible: for

4.3 Event Detection 58

instance, what if the drum stick is depressed into the surface and held firmly in place? A

performer might use this gesture to dampen a resonating sound, or perhaps to modulate

the pitch of the resonance. Indeed, the stages of an event can be defined in any way, so

therefore for events of interest the problem becomes one of identifying the conditions in

the gesture signals that are true when the event you want to detect has occurred.

4.3.2 Detecting a hit

The ”surface” of the Audio-Input Drum is a plane of constant z height somewhere above

the actual antenna pad’s surface. A layer of spongy foam placed on top of the antenna

can provide a near-silent surface to strike with the drum sticks, but care should be taken

to ensure that anything placed on the surface does not impact the electric field so much

that the monotonic nature of the estimation of the stick’s vertical position is compromised.

Some types of foam that we tried are susceptible to the buildup of electrostatic charge. The

eventual sudden discharge of this excess charge would manifest itself as sudden large dis-

continuities in the gesture signals. The near-silence of the interface is a musically important

detail, since it helps to effectively decouple the striking of the interface and the resulting

sound.

Figure 4.11 illustrates the hit detection technique used by the black box of the old Radio

Drum. When the estimated z-position of a stick would fall below a certain z-threshold

value, a hit would be triggered when a local minimum was reached. The depth of the

dip - that is, the distance between the z-threshold and the minimum - was used as the

sole determinant of the estimated velocity of the hit. The drum’s hardware would then

communicate the x, y, and velocity estimates for the hit via the serial connection to the

computer. A type of hysterisis was implemented so that the drum could not be re-triggered

until the z-estimate rose back above the z-threshold.

The algorithms in the original drum had problems with velocity estimation. Performers

noted that frequently the reported velocity value of a strike would be wrong - a forceful

hit that was reported with small velocity was nicknamed a ”duff”. Without access to the

4.3 Event Detection 59

hit!

trigger plane

local minimum

estim
ated z

depth

Figure 4.11. Illustration of the hit detection technique used by the original Radio Drum. If

the trigger plane was crossed, the minimum of the estimated signal would trigger a hit. The

depth of the hit (distance between the threshold and the minimum) determined the estimated

velocity of the hit.

demodulated signals and hit-detection algorithms in hardware, determining what caused

this problem was difficult, but it may have been triggered by a signal estimate as depicted

in Figure 4.12. The hypothesis presented is that the signal drops below the z-threshold for

a strike, and then experiences a small reversal of direction somewhere on its way down

to the real minimum of its path. The reason for this reversal might have been something

physical, or perhaps just noise in the signal. The mechanism in the Radio Drum hardware

that determines the minimum of the estimated z-position signal is fooled by this small

reversal, and hence reports a smaller velocity than would have resulted if the real minimum

had been properly tracked.

Figure 4.13 illustrates the scheme used by the Audio-Input Drum to detect hits. Rather

than use the minimum of the estimated z-position as the trigger point for a hit, the new

scheme uses the maximum negative point of the estimated velocity signal. This maximum

negative velocity value is also used as the estimate for the velocity of the hit. The velocity

can be estimated from the estimated z-position samples ẑi as follows:

v̂i = ẑi − ẑi−1 (4.9)

4.3 Event Detection 60

duff minimum

real minimum

trigger plane

Figure 4.12. Diagram of the hypothesis for the estimated z-position over time for the

situation where a ”duff” was reported by the original Radio Drum apparatus.

The maximum negative velocity point corresponds to the time when the acceleration

crosses from negative to positive. Detecting when the acceleration crosses from negative to

positive therefore becomes the central problem for detecting when the drum has been hit.

The acceleration can be estimated as follows:

âi = v̂i − v̂i−1 (4.10)

= ẑi − 2ẑi−1 + ẑi−2 (4.11)

Figure 4.14 illustrates the process of detecting whether a signal’s value is above or

below a threshold. The solid area behind the curved signal represents the output of this

ideal threshold detector: it flips upwards and downwards when the signal is above and

below the threshold. Figure 4.15 shows a Max patch that features an MSP network that

executes a simple test and uses Jitter to graph the results. Noise is added to a sine wave

to imitate a noisy signal, and the signal is tested to see if it’s greater than zero. True and

false results are indicated by the background grey bar graph. As it approaches the zero

threshold, the noise around the signal rapidly moves the combined value above and below

the zero threshold, causing the result of the test to flip-flop many times. To make decisions

in the presence of noise obviously will require methods more sophisticated than this naive

approach.

Figure 4.16 illustrates one possible solution to this problem. Rather than use a single

4.3 Event Detection 61

hit!

z-threshold

v=0

a=0

estimated v

hit!

estimated a

estimated z

minimum v

Figure 4.13. Illustration of the hit detection technique used by the Audio-Input Drum.

The maximum negative velocity is used to trigger a hit, but only if the signal is below the

z-threshold. The maximum negative velocity corresponds to the estimated acceleration

crossing above a = 0. The blue dotted vertical lines highlight the minimum of a signal,

and the corresponding crossing of the zero line by its derivative signal.

4.3 Event Detection 62

signa
l

threshold

Figure 4.14. An illustration of the input and output of a naive threshold test. The solid area

behind the curved signal flips upwards or downwards depending on whether the signal is

above or below the threshold.

threshold, the test in this case uses distinct upper and lower thresholds for the transition

from below to above and above to below their central value, respectively. This test is

implemented in the thresh˜ object, as illustrated in Figure 4.17. If the input signal moves

from below to above the object’s upper limit parameter, the output signal is set to 1. If the

input signal drops from above to below the object’s lower limit parameter, the output signal

is set to 0.

The limitation of the threshold test presented in Figure 4.16 is illustrated in Figure

4.18, where the signal is above the central value of the test, but below the upper threshold

level. This example exposes the cost that this dual thresholding-scheme imposes in terms

of the resolution of the detector. Figure 4.19 shows a way to get around this problem of

resolution by integrating the values of a signal. Small signal values above or below the

central threshold can be detected if multiple samples of the signal are accumulated to help

identify the overall trend. However, using multiple samples to detect state is only valid if

the signal is stationary, and as we know from the discussion in Section 4.2.2, in our case

our latitude to use multiple samples is small.

4.3 Event Detection 63

Figure 4.15. Max patch featuring an MSP network that executes a naive threshold test

and uses Jitter to graph the results. Noise is added to a sine wave to imitate a noisy signal.

This signal is tested to see if it’s greater than zero. True and false results are indicated by

the background grey bar graph.

4.3 Event Detection 64

signal
upper threshold

lower threshold

Figure 4.16. An illustration of the input and output of a practical threshold test with hys-

terisis thresholds above and below the threshold. The solid area behind the curved signal

flips upwards or downwards when the signal has crossed the above or below threshold,

respectively.

4.3.3 Sequential Analysis

The theory of sequential analysis allows us to design a test that adaptively scales the

number of samples used based on the signal strength [44]. An introduction to the basic

concepts behind this branch of statistical decision theory is presented in Appendix C. A

Max/MSP object called wald˜, named in honor of sequential analysis’s inventor, Abraham

Wald, was created to track the status of the acceleration signal. The code for this object is

listed in Appendix D.

Figure 4.20 illustrates the flow of logic in the sequential analysis test. Input samples are

accumulated, and if the value of the sum is either bigger than a rejection threshold or less

than an acceptance threshold, the test is terminated. If the test is not terminated, the test

continues by adjusting the thresholds and adding another input sample to the accumulation.

With reference to Figure 4.21, we’ll examine the application of sequential analysis to

the problem of determining whether a signal’s true value θ is less than some fixed value v:

in other words, the null hypothesis for our test is that θ < v. In his theory, Wald defines

4.3 Event Detection 65

Figure 4.17. The same network as in figure 4.15 but with a thresh˜ object instead of a

naive >˜ object.

upper threshold

lower threshold

central value
signal

Figure 4.18. Illustration of the limitation of the practical threshold test presented in Figure

4.16. The resolution of the detector is limited to values outside the thresholds; although

they may be uniformly on one side of the central threshold, values in between the two outer

thresholds do not trigger the threshold detector one way or the other.

4.3 Event Detection 66

upper threshold

lower threshold

central value
signal

accumulated signal

Figure 4.19. Illustration of accumulating a signal to detect the overall trend of a signal

value.

what he calls a zone of indifference between two values θ0 and θ1. The idea is that if

the true value θ is in between these limits, the results of the test will be indeterminate.

However, if the true value θ is above θ1 we should reject the null hypothesis as being false,

and if the true value is below θ0 we should accept the null hypothesis as being true.

Furthermore, we can adjust the thresholds to give us the error probabilities we desire.

We let α represent the desired probability of rejecting the hypothesis when in fact the

signal is in the zone of preference for acceptance, and β represent the desired probability

of accepting the hypothesis when the signal is in the zone of preference for rejection; these

are sometimes known as the miss and false alarm errors, respectively. Then if σ2 is the

variance in the signal, and m is the index of the sample in the test, starting with m = 0, the

threshold of acceptance thresha and the threshold of rejection threshr can be expressed

as follows:

thresha(m) =
σ2

θ1 − θ0

log
β

1− α
+ m

θ0 + θ1

2
(4.12)

threshr(m) =
σ2

θ1 − θ0

log
1− β

α
+ m

θ0 + θ1

2
(4.13)

Each of the thresholds in the above equations has a static intercept component that’s

dependent on σ2, α, β, θ0 and θ1, and a slope (θ1+θ0)/2 that is added to the thresholds with

4.3 Event Detection 67

accumulator

hypothesis
accepted

less than
acceptance
threshold?

yes

bigger than
rejection

threshold?

hypothesis
rejected

yes

test
continues

nono

acquire input
sample

update
thresholds

Figure 4.20. Flow of data in the sequential test of whether the input signal is below a

certain value. If the accumulated value of the input samples is either bigger than the

rejection threshold or less than the acceptance threshold, the test is terminated. If the

accumulated value lies in between these thresholds the test continues.

4.3 Event Detection 68

zone of preference of acceptance

zone of preference of rejection

zone of indifference

Figure 4.21. Illustration of the various zones of the wald test.

4.3 Event Detection 69

accumulation

Figure 4.22. An illustration of the sequential test procedure when testing if the mean of

a normal random variable is below a certain value. In this plot θ0 + θ1 < 0, so the

slope of the two threshold lines is negative. If the sum of successive samples exceeds the

upper threshold the hypothesis is rejected; if the sum falls below the lower threshold the

hypothesis is accepted; while the sum stays in between the two thresholds the test continues.

4.3 Event Detection 70

each increasing sample index m. If θ1 + θ0 = 0 the acceptance and rejection thresholds

thresha and threshr are simply horizontal lines with a slope of 0; on the other hand, Figure

4.22 illustrates the situation where θ0 + θ1 < 0 so that the thresholds decrease linearly as

the sample index m increases.

We use the wald˜ external to track the sign of the acceleration signal - that is, whether

a > 0 or a < 0. Ideally we would like θ0 = θ1 = 0, but the theory can’t provide for

this since the above threshold formulas have θ1− θ0 in the denominator of a fraction in the

intercept, so the very small value of θ1 − θ0 that we desire will result in thresholds very far

away from the a = 0 line. This might not be a problem if our signal were stationary and

we could collect samples forever, but unfortunately the accelerations we want to detect last

only a short time.

The variable nature of our signal makes using sequential analysis problematic, since

it makes no provision for data that is not stationary. Given a true signal value of θ, the

average amount of samples required for our test to reach a decision, Eθ(n), is given by the

following formula [44]:

Eθ(n) =
h1 + L(θ)(h0 − h1)

θ − s
(4.14)

where h1 and h0 are the intercepts of the rejection and acceptance thresholds, respectively,

s = θ0+θ1

2
is the slope of the thresholds and L(θ) is the operating characteristic of the test,

the probability that the sequential test will lead to the acceptance of the hypothesis when

θ is the true signal value. This function is plotted in Figure 4.23. The application of our

probability of error constraints requires that L(θ1) = β and L(θ0) = 1 − α. So when the

true mean θ = θ0,

Eθ0(n) =
h1 + (1− α)(h0 − h1)

θ0 − s
(4.15)

or,

4.3 Event Detection 71

Figure 4.23. The operating characteristic of our Wald test.

4.3 Event Detection 72

a

a = 0

Figure 4.24. Hysteresis involved in bidirectional acceleration tracker. When the signal

transitions from positive to negative or vice versa, the θ0 acceptance threshold flips. θ1 = 0

always.

Eθ0(n) =
h1 + (1− α)(h0 − h1)

θ0 − θ0+θ1

2

(4.16)

=

σ2

θ1−θ0

[
log 1−β

α
+ (1− α)(log β

1−α
− log 1−β

α
)
]

θ0−θ1

2

(4.17)

4.3.4 wald˜ object implementation

To implement our acceleration sign-tracker, we’re most interested in the transitions - that

is, if the acceleration is currently negative we want to know when it transitions to positive.

Furthermore, we strongly do not want the test to indicate that a transition from negative to

positive has occurred if the true value is negative. We therefore set θ1 = 0 and offset θ0 in

the direction of the transition we want to detect as depicted in Figure 4.24; in the case of

4.3 Event Detection 73

searching for a negative to positive transition this means θ0 > 0, and when searching for a

positive to negative transition this means θ0 < 0. Then solving for θ0 we get

θ2
0 =

−2σ2

Eθ0(n)

[
log

1− β

α
+ (1− α)(log

β

1− α
− log

1− β

α
)
]

(4.18)

The above equation allows us to set α, β, and Eθ0(n), the expected number of samples

needed to terminate the test at the θ0 acceptance point, calculate the value of σ2 from some

sample data, and from all of this, calculate the value of θ0 needed to achieve the desired

behaviour.

After fixing the desired α and β failure rates, the relationship can be expressed simply

as

θ0 ∝
σ√

Eθ0(n)
(4.19)

This formula is useful in crystallizing the three-way relationship between latency, rep-

resented by Eθ0(n), noise, represented by σ, and sensitivity, represented by θ0. With refer-

ence to Section 4.2.2, and specifically the plot of Figure 4.3, we can see that at a sampling

rate of 2000 Hz, an averaging filter 5 samples long has a 6db cutoff point at about 250Hz.

We would not want to go any lower than that, so setting Eθ0(n) = 5 is probably as high as

we would want to go.

The wald˜ object maintains a running sum
∑

am of the signal that’s input, and updates

the acceptance and rejection thresha(m) and threshr(m) thresholds with each sample

value am. The implementation includes a real-time plot of the accumulation, the thresholds,

and the current estimate of the sign of the signal. Figure 4.25 shows this plot in the case

where a hit has been detected. The solid yellow bars are the accumulated input acceleration

signal
∑

am. The acceleration samples am, rendered as white single pixels, are most visible

where the hit takes place on the right-hand side of the graph. The blue pixels above and

below the yellow accumulated signal represent the rejection and acceptance thresholds.

When the object is searching for a crossing from negative to positive, as it is for most of

4.3 Event Detection 74

Figure 4.25. A plot of the wald˜ object data where a hit is detected.

4.3 Event Detection 75

Figure 4.26. A plot of the wald˜ object data where the sticks are motionless. θ1 = 0 in this

plot. The rejection threshold is quickly reached over and over.

the horizontal space in this plot, the upper boundary is the threshold of acceptance and the

lower is boundary of rejection. With each sample that passes, if neither threshold has been

reached the position of the two thresholds shifts an amount (θ0 + θ1)/2. The accumulated

signal will eventually fall outside the thresholds. If the threshold of rejection is exceeded,

the sum is set to zero, the thresholds are reset to their initial values, and the test continues.

This is what happens over and over in the left hand side of Figure 4.25.

The translucent grey foreground indicates the current estimate of the sign of the signal.

This is negative on the whole left-hand side of Figure 4.25. There is a sudden downward

spike in the input signal on the middle right of the graph. In the middle of this plot, the

translucent grey flips to the upper half of the plot, meaning that the sum of the input signal

has crossed the acceptance threshold. When this happens the estimated sign flips from neg-

ative to positive. Since the object is now looking for a transition from positive to negative,

the threshold of rejection becomes the upper blue line and the threshold of acceptance the

lower blue line. The sign estimate quickly flips back to negative after the stick has finished

its rapid reversal of direction and begins the deceleration of its upwards arc.

Figure 4.26 shows plots for both the left and right sticks. The wald˜ object is using

the input acceleration samples am to track the sign of the acceleration signal. On the left

hand side the wald˜ object is in an am > 0 state, whereas on the right hand side it is in

4.3 Event Detection 76

Figure 4.27. A plot of the wald˜ object data where a hit is missed. The large upwards

acceleration in the left part of the plot is missed because the incoming samples am are

about the same magnitude as the slope of the acceptance threshold thresha(m). With

θ1 = 0, this slope is a good measure of the sensitivity of the interface.

an am < 0 state. Note that in the left hand plot the acceptance and rejection thresholds

slope downwards, whereas in the right hand plot the thresholds slope upwards. The sticks

were not moving during the formation of these plots, so the rejection threshold is quickly

reached over and over, and the test re-started. The two plots are scaled identically with

a = 0 in the vertical center of the plot. Note that the larger amount of noise in the right

hand graph causes the thresholds to be farther from the a = 0 line and have a more steep

slope.

Figure 4.27 is an example of the wald˜ detector missing a hit. The large upwards spike

on the far left is growing at about the same rate as the threshold is sloping upwards. If the

4.3 Event Detection 77

Figure 4.28. A plot of the z and velocity estimates. In this figure the pad has been hit by

the two sticks at roughly the same time. Note that the two plots are not synchronized.

input signal were a little larger the sum would grow a little faster and this spike might have

exceeded the threshold. What happens instead is that eventually the growth of the spike

stops as the stick stops accelerating upwards, and the lower rejection threshold eventually

surpasses the input sum. This shows how the slope of the thresholds, (θ0 + θ1)/2 = θ0/2,

can be thought of as the sensitivity of the detector.

Using our assumption of gaussian noise, if σ2
z is the variance in the z estimate, and σ2

v

and σ2
a are the variances in the velocity and acceleration of the z estimate, respectively,

then σ2
v = 2σ2

z and σ2
a = 4σ2

z . We would expect then a better rate of success at detecting

the minimum of the z estimate rather than the minimum of the v estimate, but detecting

an event using this minimum of velocity has the advantage that a hit is detected before the

minimum of the z estimate is reached. This can be seen in Figure 4.28, which is a snapshot

of the velocity-graph implemented as a part of the Audio-Input Drum patch. Note that the

4.3 Event Detection 78

white decaying spikes, which represent detected hits, come at the minimum of the yellow

velocity estimate, and before the purple z estimate line reaches its minimum. Using the

maximum negative velocity as the trigger point makes sense from a physical standpoint

as well: when a drum stick comes into contact with the surface of the drum, the restoring

force of the drum surface immediately begins to accelerate the stick upwards. The striking

of a drum head is an excitation gesture [30]; resulting synthesis should begin as soon as

the drum head and stick are in contact.

4.3.5 The full hit detection algorithm

Figure 4.29 is a flow chart of the operations in the hit detection algorithm. A change from

negative to positive acceleration is not the only characteristic of a hit. We must also ensure

that the stick is actually on the surface of the drum and not simply waving around in the

air. We implement this positional test simply by comparing the z estimate with a threshold

value that represents the value of the z estimate when the stick is at the surface of the drum.

The z estimate at the time of a potential hit must be below this threshold. This z threshold

is measured during a step in the calibration procedure where the sticks remain motionless

on the surface of the drum. During this procedure the average z estimate is recorded. Since

the z estimate is bowl-shaped over the area of the drum surface that we may want to use, a

parameter of the patch allows the user to shift this threshold upwards or downwards, scaled

by the estimated standard deviation of this z estimate signal. A negative value for this

parameter allows more of the edges of the drum surface to be involved in hit detection, but

also creates the possibility of hits being detected above the surface of the drum.

Let’s imagine that a stick is sitting motionless on the surface of the drum. Let’s also

imagine that this stick is well below the z-threshold, as might be the case in the current

implementation if the stick is sitting in the center of the drum due to the bowl-like curvature

of the z estimate over the surface of the drum. Let’s assume then that the z threshold test

will return a true value, so the only thing preventing the hit-detection algorithm from a false

alarm is the wald˜ external’s detection of a transition from negative to positive acceleration.

4.3 Event Detection 79

wald~: has the acceleration
changed from negative to postiive?

is the stick's position close to the
surface of the drum?

differentiate to
get velocity

differentiate to
get acceleration

both
yes?

hit!

yes yes

not a
hit.

not a
hit.

no no

raw
signal A

raw
signal B

raw
signal C

raw
signal D

estimate z
position

Figure 4.29. Logical flow chart of operations in the hit detection algorithm.

4.4 Responding to Signal Triggers in Max/MSP 80

In this situation the signal really is stationary, so the sequential detection theory behind the

wald˜ external is valid without caveat, and our false alarm rate of β will determine the rate

of false alarms in the hit detection algorithm.

If a hit is detected, the velocity of the hit is estimated to be the maximum negative

value that the velocity estimate reached in the time since the last hit. Because the signal

is so much stronger close to the surface of the drum, this maximum negative velocity is

effectively the minimum of the signal in the few milliseconds leading up to the detection of

the hit. Using the maximum negative velocity as the estimate of the force of a hit intuitively

makes more sense than using the maximum negative position, which can vary depending

on the physical characteristics of the foam that is being hit.

A calibration procedure was designed to quickly set all the parameters for both the

scaling of the x, y and z estimates and to calculate statistical parameters to be used in the

hit detectors. The procedure and its implementation code are detailed in Appendix E.

4.4 Responding to Signal Triggers in Max/MSP

We now should consider the output of a signal-processing algorithm that has been devised

to detect an event from an incoming set of signals. It can help conceptually to abstract the

event-detection algorithm into its own Max object box, as is shown in Figure 4.30; here

we see the three possibilities of an algorithm that produces event data, signal data, or some

combination of the two.

Making an educated choice for output data format requires a solid understanding of the

advantages and disadvantages of signal and event-based processing in the Max/MSP/Jitter

environment; details about the Max/MSP/Jitter runtime architecture can be found in Ap-

pendix A. The choice of signal or message may be influenced by the expected frequency

of the event to be detected, and the desired response. If the event is expected to occur

infrequently and the programmed response is computationally expensive, event-based out-

put will likely be the more efficient choice. However, if response to one or more of the

4.4 Responding to Signal Triggers in Max/MSP 81

Figure 4.30. Possible output from a signal-based event-detection algortihm: output pa-

rameters as an event, as multiple signals, or as some combination of event and signal data.

Figure 4.31. Triggering the adsr˜ object with event or signal data.

parameters requires sub-vector sample-accuracy, signals will be required.

To illustrate the kind of inefficiency introduced by processing temporally local data in

the signal domain, consider the example of Figure 4.31, which shows two different ways

to trigger the adsr˜ object, an MSP generator written by the author of this thesis. Each of

the adsr˜ object’s inputs will accept signal or event data. In the construction on the left, the

input to the object is entirely in the event domain, whereas in the right-hand construction a

functionally identical network is replicated in the signal domain.

In the event-domain scheme, each gestural event results in a single set of data being

output. The adsr˜ object will generate an ADSR envelope after this data set has been

received. In the signal-domain scheme, a trigger signal is necessary to define the moment in

4.4 Responding to Signal Triggers in Max/MSP 82

time at which the event has been detected. The trigger signal will be zero at all times when

a new event has not been detected, and 1 for the single sample at the time when an event

is thought to have occurred. Figure 4.31 illustrates two ways in which the trigger signal

can be used to propagate the type of static signal values that are suitable for event-based

calculations. The leftmost inlet of the adsr˜ object is that which controls the amplitude of

the generated envelope. The trigger signal from the detectorB˜ abstraction is multiplied by

its second output, and the resulting signal sent into the adsr˜ object’s first inlet. This signal

will be zero at all times when a new event has not been detected, and will be the value of the

signal coming from the second outlet when a new event is thought to have occurred. The

adsr˜ object will respond by generating an ADSR envelope beginning at the same sample

frame in which it received the non-zero signal value.

The other two signal parameters are sent into the adsr˜ object with the sah˜ (sample

and hold) object. This object uses the trigger signal to determine when to sample the

incoming parameter signal value. Its output signal will remain at this sampled value until it

is triggered to sample the incoming signal again. Using the sah˜ object allows us to freeze

a signal parameter at a certain value in between events.

The advantage of the signal-based method is that the ADSR envelope will be triggered

with sample-accuracy - that is, the envelope will begin in the same sample frame that the

event was detected. In the event-based model, on the other hand, the triggering message

will not be sent to the synthesizing objects until the next division between audio vectors.

This concept is illustrated in Figure 4.32. The individual blocks in the figure represent

single samples; these are grouped in long, rectangular audio vectors. With a signal-based

trigger, the output synthesis begins in the same sample that the event was detected. With a

message-based trigger a message is placed in the queue when the event is detected. When

the message queue is next serviced this message will be sent to the synthesizing objects.

If the scheduler in audio interrupt option is enabled, a message-based trigger will begin

synthesis before the next audio vector begins calculating. Since the trigger can occur any-

where within an audio vector, but the synthesis won’t be realized until the start of the next

4.4 Responding to Signal Triggers in Max/MSP 83

vector, there will therefore be a random latency added to the system, and the distribution of

this latency is uniform across the size of the audio vector. If the software is operating with

a small vector size, this potential jitter in the response time may be acceptable. At 64000

Hz with a vector size of 64 the maximum latency introduced in this random process is 1

millisecond. If the scheduler in audio interrupt option is not enabled, the event-processing

is services in a separate thread and there’s no guarantee that the synthesis will begin at the

start of the next vector, so jitter could be worse.

The drawback to using signal-based triggers is computational efficiency. Given an event

that occurs on average one time per second and a sampling rate of 64000 Hz, 63999 false

comparisons will be made for every object that is monitoring the event trigger signal. If

parameters must be frozen as in Figure 4.31, the sah˜ objects will also waste many cycles

waiting for the command to re-sample their inputs.

Figure 4.33 shows another example of a message-based network and its signal-based

equivalent. To keep the response to an event in the signal domain, all residual calculations

must be done without resorting to messages. In this example a simple random choice

between two values is being made. As in Figure 4.32, many more cycles will be used by

the signal-based network. Numeric processes such as that illustrated in Figure 4.33 will

usually have a signal-based translation, but for many complex procedures it’s not possible

to replicate a message-based network in the signal domain without resorting to creating

your own custom C or Java external.

4.4.1 The event˜ object

Even if one is satisfied with a message-based synthesis trigger, one still has to deal with

transferring parameter values from the signal to the message domain. Figure 4.34 shows

one way to accomplish this transfer: when a trigger is received the sah˜ objects sample the

value of their parameters. The next time the scheduler is serviced the edge˜ object sends

out a bang and the snapshot˜ objects send out the sampled parameter values as messages.

Although this technique works in the vast majority of cases, it has a serious problem if two

4.4 Responding to Signal Triggers in Max/MSP 84

event!

signal

queue

m
essage

event
detector
output

synthesis
resulting from
signal trigger

synthesis
resulting from

message trigger

Figure 4.32. The difference between triggering a synthesis event with a signal and a mes-

sage. The individual blocks are single samples, vertically grouped in audio vectors. With

a signal-based trigger, the output synthesis begins synchronously with the event detection.

With a message-based trigger a message is placed in the queue, and output synthesis begins

when the queue is next serviced.

4.4 Responding to Signal Triggers in Max/MSP 85

Figure 4.33. Making a random decision in the event and signal domains.

or more events are triggered within a single audio vector. In this case the edge˜ object will

send out a single bang, and the sah˜ objects will contain the parameter values for the last

event; any events detected prior to the last event will be lost.

To solve this problem, the event˜ object was created. The code for this object is listed in

Appendix F. Figure 4.35 recreates the object network of Figure 4.34. The first argument to

the event˜ object sets the number of parameter inlets to create and sample. When it receives

a trigger the current values of the parameters are sampled and placed in an output queue.

When the scheduler is next serviced, all events in the queue are output as lists in the order

they were recorded.

4.4 Responding to Signal Triggers in Max/MSP 86

Figure 4.34. Transcoding from the signal domain to the message domain. When a trigger

is received the sah˜ objects sample the value of their parameters. The next time the sched-

uler is serviced the edge˜ object sends out a bang and the snapshot˜ objects send out the

sampled parameter values as messages.

4.4 Responding to Signal Triggers in Max/MSP 87

Figure 4.35. The event˜ object. This graph is very nearly functionally equivalent to

Figure 4.34, except that the event˜ object can deal with multiple events in a single audio

vector, whereas the sah˜-based solution of Figure 4.34 will only output the last event in a

vector.

Chapter 5

Future Audio-Input Gesture Work

Chapters 3 and 4 detailed various ways in which the work presented in this thesis has

improved the Radio Drum and Radio Baton interface: the interface is more sensitive, more

responsive, and more reliable. But perhaps the most important contribution from this work

is how it creates opportunity for further development. Liberated from the constraints of

custom hardware, the barrier to entry for gesture analysis will continue to drop as audio-

input hardware and powerful personal computers continue to become less expensive. The

analysis techniques implemented to mimic the behaviour of the Radio Drum are relatively

simplistic; some of the numerous opportunities for further advancement of the interface are

discussed below.

5.1 Signal-to-noise

The potential signal-to-noise ratio of the interface can be improved either by increasing

the amount of received signal or reducing the amount of noise in the signal. The former

could be accomplished by amplifying the carrier signals. Currently the output of the audio

interface is sent directly to the transmitter at the end of the drum stick. An amplification of

this signal by a factor of a would result directly in an equivalent improvement of a factor

of a in the signal-to-noise ratio.

Some thought would be required to decide how much voltage was safe to send to the end

of the rapidly moving drum sticks. It might be safer to reverse the signal flow in the audio

5.1 Signal-to-noise 89

loop so that what are currently the antennae become the transmitters and the sticks become

the antennae. The modular design of the current patch makes the software engineering

required for this kind of fundamental change minor. With the current apparatus, rather than

have two carrier waves there would have to be four, and instead of four incoming signals

each being split with two bandpass filters there would be two incoming signals each split

with four bandpass filters.

The other method of improving the signal-to-noise ratio, reducing the noise, involves

improving the filters that operate on the raw input data. The filters currently being used to

demodulate the input signals are basic biquadratic filters designed in conformance to the

RBJ cookbook of audio filter design [45]. It is clear from Figure 3.17 that the 30kHz filter

is providing more attenuation than the 26kHz filter. Accordingly, the post-demodulation

noise of the input channels using the 26kHz carrier signal are worse than those using the

30kHz carrier wave. After the calibration procedure that measures this noise and sets the

hit-detecting thresholds accordingly, the effect of the difference in noise between the sticks

is that the 30kHz stick is more sensitive than the 26kHz stick. Since it is desirable for both

sticks to have the same sensitivity, either the two filters should be designed with similar

attenuation characteristics, or the event-detection thresholds of the better-performing stick

have to be limited to the performance of the worse-performing stick. Designing filters with

prescribed specifications can be accomplished through various iterative algorithms [35].

Another possibility would be to use the same carrier frequency for both sticks, but to have

the two carriers be 90 degrees out-of-phase. This was experimented with, but was phased

out in order to keep the design as simple as possible in this first iteration.

A large potential improvement in the signal-to-noise ratio might be realized by im-

plementing an estimator based on a Kalman filter [46]. The Kalman filter is an adaptive

noise-removing system that has had great success in navigation applications, among others.

The design of a Kalman filter would use the cross-correlations between antennae to more

efficiently separate signal from noise. Furthermore, the three dimensional estimates would

be made as a vector rather than independently - for example, the estimate of z and y could

5.2 Antennae Geometry and Positional Estimation 90

inform the estimate of x.

5.2 Antennae Geometry and Positional Estimation

The flat surface of the current antenna is excellent for detecting changes in vertical direction

in close proximity to its surface, but the complex shape of the electric field that results

from a finite rectangular plane makes three-dimensional position estimation difficult. I

propose experimenting with a new antenna geometry based on transmitting balls. The

carrier signals from the audio interface could be amplified and sent to several small metallic

spheres. The spheres could be arranged in any position, and the sticks act as antennae. The

mathematics of positional estimation is simplified significantly by the spherical symmetry

of the transmitters. The flexible positioning of the spheres would allow spheres to be placed

in locations of interest - for instance, underneath each surface in a traditional trap drum kit

- while still allowing reasonable three-dimensional positional estimation. Software would

have to be cognizant of the positions of the transmitting spheres and flexible enough to

accommodate a variable number of spheres.

Any accurate positional estimator would have to deal with the fact that the two sticks

interact with one another electrically. It is clear from using this interface that there is a

strong correlation between the proximity of the two sticks and the induced signals. The field

theory behind their interaction needs further exploration, and if the effect can be modeled

some multi-dimensional estimator could perhaps deal with the six-dimensional problem

(three for each stick) as a single state.

5.3 Visual feedback

Theory is all well and good, but when you’re ready to step on stage it’s the small details that

count. Practical performance considerations and further pushing of the envelope in terms

of visualization technology and interface design are important areas to explore to truly push

5.4 New Modes 91

the boundaries of the interface as a musical instrument. One fundamental difficulty that still

exists when setting up a complicated performance patch with the Audio-Input Drum is that

there is no visual feedback system on the drum itself. To interact visually with the program,

even just to confirm that it is working, requires looking at a computer screen. It would be

exciting to use a video projector to project directly onto the surface of the drum. This would

allow for visual interfaces that adapt in real time to the position of the sticks. For instance,

imagine a performance patch that interacted with other musicians, allowing the user of

the Audio-Input Drum to sample in real-time audio from the other performers, and assign

the sample to a physical location on the drum surface. A projection system could render a

waveform of the sampled audio, or some other representation of the sound, onto the desired

location of the drum, giving the performer a visual cue to know where she should hit the

drum to play back the sound. With the spherical antenna geometry discussed above it might

even be possible to rear-project onto and strike a thin but taut elastic membrane.

5.4 New Modes

Providing an extended set of tools to facilitate the creation of new interactive pieces is

another important area ripe for exploration. Having access to the raw signals of the gesture

affords us the opportunity to create new modes of interaction beyond the simple duality of

the ”whack” and ”continuous” modes offered by the Radio Drum.

First, there is the opportunity to simplify what might be called compound modes made

up of various stages of whack and continuous reporting. For instance, imagine a mode that

might be called ”whack and hold”: after the surface is hit, the mode could report continuous

data until a vertical threshold were reached. One potential mapping of this mode would be

as a synthesizer controller: the initial whack triggers a note on, and the vertical position

controls the amplitude of the note until the upper vertical threshold is exceeded, at which

point a note off is sent.

Beyond compound modes, algorithms could be developed to detect entirely new ges-

5.5 Non-artistic applications 92

tures. For instance, a slight horizontal ”flick” of the wrist might be a gesture that con-

veniently augments regular whack and continuous gestures. A flick would have a three-

dimensional position, an amplitude, and possibly a two-dimensional orientation to describe

the direction of the flick. If the gesture can be defined parametrically, an algorithm can be

developed to track it. Now that the analysis is software-based, it will be exciting to see

what kinds of gestures people find valuable to detect and parametrize.

5.5 Non-artistic applications

The strict demands of the performance paradigm make the musical instrument an outstand-

ing application for refinement of a gesture-capture system. Now that an acceptable system

has been developed, it could be valuable to work towards using the technology for other

applications, perhaps with broader purposes. For instance, rather than forcing a disabled

person to adapt to the interfaces available, an open-ended and precise system such as this

could be trained to track gestures suitable to the individual.

Bibliography

[1] R. Boie, L. W. Ruedisueli, and E. R. Wagner, “Gesture Sensing via Capacitive Mo-
ments,” internal report for AT&T Bell Labs.

[2] M. Mathews, “Three dimensional baton and gesture sensor,” Patent 4 980 519.

[3] V. Lennard, MIDI Survival Guide. San Jose: PC Publishing, 1993.

[4] J. Rona, The MIDI Companion. New York: Hal Leonard Corp, 1992.

[5] [Online]. Available: http://www.cycling74.com

[6] [Online]. Available: http://en.wikipedia.org/wiki/L%C3%A9on Theremin

[7] [Online]. Available: http://en.wikipedia.org/wiki/Rhythmicon

[8] [Online]. Available: http://en.wikipedia.org/wiki/Theremin

[9] M. V. Mathews and C. Abbott, “The Sequential Drum,” Computer Music Journal
4(4), 1980.

[10] M. Mathews, “The Conductor Program and the Mechanical Baton,” 1989.

[11] M. V. Mathews, “The Radio Baton and the Conductor Program, or: Pitch, the Most
Important and Least Expressive Part of Music,” Computer Music Journal 15(4), 1991.

[12] [Online]. Available: http://en.wikipedia.org/wiki/Piezoelectric

[13] A. R. Tindale, A. Kapur, G. Tzanetakis, P. Driessen, and A. Schloss, “A Compari-
son of Sensor Strategies for Capturing Percussive Gestures,” Proceedings of the 2005
International Conference on New Interfaces for Musical Expression (NIME05), Van-
couver, BC, Canada, 2005.

[14] [Online]. Available: http://www.soundonsound.com/sos/1994 articles/nov94/
korgwavedrum.html

[15] E. Fléty, “3D Gesture Acquisition Using Ultrasonic Sensors,” Trends in Gestural Con-
trol of Music, 2000.

[16] R. Auzet, “Gesture-following Devices for Percussionists,” Trends in Gestural Control
of Music, 2000.

[17] [Online]. Available: http://www.buchla.com/mlumina/index.html

[18] R. Boie, M. Mathews, and W. A. Schloss, “The Radio Drum as a Synthesizer Con-
troller,” Proceedings of the International Computer Music Conference, 1989.

http://www.cycling74.com
http://en.wikipedia.org/wiki/L%C3%A9on_Theremin
http://en.wikipedia.org/wiki/Rhythmicon
http://en.wikipedia.org/wiki/Theremin
http://en.wikipedia.org/wiki/Piezoelectric
http://www.soundonsound.com/sos/1994_articles/nov94/korgwavedrum.html
http://www.soundonsound.com/sos/1994_articles/nov94/korgwavedrum.html
http://www.buchla.com/mlumina/index.html

Bibliography 94

[19] R. Boulanger and M. Mathews, “The 1997 Mathews Radio-Baton and Improvisation
Modes,” Proceedings of the International Computer Music Conference, 1997.

[20] D. Jaffe and A. Schloss, “The Computer-Extended Ensemble,” Computer Music Jour-
nal 18:2, 1994.

[21] ——, “Wildlife,” The Virtuoso in the Computer Age, 1994, an interactive duo for
Mathew/Boie Radio Drum and Zeta Violin.

[22] ——, “A Virtual Piano Concerto The coupling of the Mathews/Boie Radio Drum
and Yamaha Disklavier Grand Piano in ’The Seven Wonders of the Ancient World’,”
Proceedings of the International Computer Music Conference, 1994.

[23] R. Jones and A. Schloss, “UNI,” Iota Center, 2000, interactive music and video per-
formance.

[24] A. Schloss and H. Durán, “Blind Data,” DVD of the 2005 NIME conference, Vancou-
ver, BC, 2006, recording of a live performance.

[25] R. Boulanger, “Radio Sonata,” 1990, for Radio Baton, Conductor Program and
Yamaha TG77.

[26] ——, “GrainStorm,” 1993, for Radio Baton, Conductor Program and Yamaha TG77.
Features real-time video sequencing by Greg Thompson.

[27] ——, “StarDust,” 2003, for Radio Baton, Video Baton and Max/MSP/Jitter.

[28] [Online]. Available: http://www.csounds.com/boulanger/

[29] R. Bresin, K. F. Hansen, and S. Dahl, “The Radio Baton as configurable musical in-
strument and controller,” Proceedings of the Stockholm Music Acoustics Conference,
2003.

[30] C. Cadoz and M. M. Wanderley, “Gesture - Music,” Trends in Gestural Control of
Music, 2000.

[31] A. S. Tanenbaum, Modern Operating Systems, 2nd Ed. Upper Saddle River, New
Jersey 07458: Prentice-Hall, Inc., 2001.

[32] T. M. Nakra, “Searching for Meaning in Gestural Data,” Trends in Gestural Control
of Music, 2000.

[33] R. Avizienis, A. Freed, T. Suzuki, and D. Wessel, “Scalable Connectivity Processor
for Computer Music Performance Systems,” 2000.

[34] J. T. Allison and T. A. Place, “Teabox: A Sensor Data Interface System,” Proceedings
of the 2004 International Computer Music Conference, 2004.

[35] A. Antoniou, Digital Filters: Analysis, Design and Applications, 2nd ed. Dubuque,
Iowa: McGraw Hill, 2000.

http://www.csounds.com/boulanger/

Bibliography 95

[36] S. Haykin, Communication Systems, 3rd ed. United States: John Wiley and Sons,
Inc., 1994.

[37] [Online]. Available: http://www.rme-audio.com/

[38] N. MacRae, John von Neumann. Toronto: Random House, 1992.

[39] D. Zicarelli, “Communicating with Meaningless Numbers,” Computer Music Journal,
vol. 15, no. 4, pp. 74–77, 1991.

[40] M. Schwarz and L. Shaw, Signal Processing: Discrete Spectral Analysis, Detection
and Estimation. Dubuque, Iowa: McGraw Hill, 1975.

[41] D. J. Griffiths, Introduction to Electrodynamics, 2nd ed. Englewood Cliffs, New
Jersey 07458: Prentice-Hall, Inc., 1989.

[42] R. T. Hodgson, “The problem of being a normal deviate,” 1979.

[43] F. R. Moore, “The Dysfunctions of MIDI,” Computer Music Journal, 1988.

[44] A. Wald, Sequential Analysis. New York: John Wiley & Sons, Inc., 1947.

[45] [Online]. Available: http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt

[46] P. Y. H. Robert Grover Brown, Introduction to Random Signals and Applied Kalman
Filtering. New York: John Wiley & Sons, Inc., 1992.

[47] M. Puckette, “The Patcher,” Proceedings, International Computer Music Conference,
pp. 420–429, 1988.

[48] D. Zicarelli, “An Extensible Real-Time Signal Processing Environment for Max,”
Proceedings of the 1998 International Computer Music Conference, pp. 463–466,
1998.

http://www.rme-audio.com/
http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt

Appendix A

The Architecture of Max/MSP/Jitter

Object-oriented programming encourages a mode of thinking that segments a program-

ming problem into smaller, localized pieces that together combine to solve a problem. The

importance of modularity is stressed; rather than operating as a collection of functions, a

program written in an object-oriented language may be seen as a collection of cooperating

objects, each of which is capable of sending and receiving messages, processing data, and

sending messages to other objects.

Some object-oriented languages carry a performance penalty when compared to a native

piece of code that performs the same function. Still, for some applications the tradeoff of

having a stable environment built on higher-level, independent pieces of code is worth

the loss in efficiency. Nowhere is this more evident than with the latest generation of

modular audio processing tools, such as Cycling ’74’s Max/MSP/Jitter[47, 48]. The visual

programming environment of Max aggregates the ability to build component objects in

several different high-level languages - C, Java, JavaScript, GLSL, and Cg are officially

supported, and extensions for many other languages have been contributed by independent

developers.

The graphical nature of Max is a stumbler for many programmers used to scripted, text-

based languages. Programs, which start out as empty, blank pages, are known as patches.

In Max/MSP/Jitter objects are represented by boxes that can be placed anywhere on the

screen. The boxes have inlets, which accept data, and outlets, which send data. Data can be

in the form of messages (zero-dimensional), signal vectors (one-dimensional), or matrices,

A.1 Objects 97

which could probably more properly be called tensors (many-dimensional). This section

gives a description of each of the data types, and then describes the threading model in

which execution occurs.

A.1 Objects

The basic building block of Max programming is called an object. Like other object-

priented programming languages, Max is made up of many classes of objects, each of

which has a unique behaviour. Different objects can be used together in different ways

to accomplish the desired programming task. At the time of writing, objects for the Max

environment can be programmed in C, Java, or JavaScript. Jitter users can also program

shader components in GLSL and Cg. Third-party extensions provide support for PERL,

Python, and some other less well-known scripted languages.

For example, have a look at Figure A.2. What you might call a program in another

language is called a patch in Max: this simple patch contains three objects, each of which

is visually represented by a grey box. The class of a Max object is defined by the text

contained within its box. The notein class is one of several classes designed to receive

MIDI input from the outside world. Max is able to receive MIDI input through a standard

MIDI interface, the kind that one could use with a commercial sequencing package such as

EMagic’s Logic or Steinberg’s Cubase.

Notice that this notein object is connected to the other objects via some straight black

lines. These connections are called patch cords, and like the similarly named cables that

connect different components of a modular synthesizer together, the patch cords in Max

define the path of data flow and allow objects to act together. Data emanates outwards from

the bottom of a object into the top of another object; the notein object in this example has

three outlets which represent, from right to left, the MIDI channel, velocity, and pitch of a

note event.

The + 12 object takes the integer input from the pitch outlet of the notein object, adds

A.1 Objects 98

Figure A.1. Max patch that adds twelve semitones (an octave) to all incoming MIDI data

12, and outputs the result. This is then passed to the noteout object, which will output the

altered MIDI information out the interface, presumably to a sound generator of some sort.

The function of this simple patch, therefore, is to shift incoming note events up an octave

in pitch.

All of the data flowing in Figure A.2 is integer data. As primitives in its message

passing architecture Max is able to pass 32-bit integers, 32-bit floating-point values, and

symbols. Additionally, a message can consist of any combination of these data types com-

bined into a multi-element list. Since a 32-bit value can be used to reference an address in

memory, some objects pass pointers which they dereference internally to operate on more

complicated data structures.

Programming a Max object consists of defining a set of responses to incoming mes-

sages. For instance, the + object in Figure A.2 has been designed to respond to incoming

integers by adding the addend argument, in this case 12, to the input and sending the result

out the outlet. Methods can be defined to respond generally to any of the primitive types,

or specifically to a named message. Appendix ?? is a good overview of what a Max/MSP

external really is.

A.2 Messages 99

A.2 Messages

MIDI was proposed in 1982 and standardized in 1983 by a consortium of synthesizer

manufacturers[3, 4]. The idea was to create a standard for the communication of musi-

cal performance data between synthesizers and sequencers of different makes and models.

The protocol was popular with companies because it allowed their products to interface

with thos efrom better-known manufacturers such as Roland and Sequential Circuits, who

spearheaded the MIDI effort. The protocol was also popular with composers who wanted

to connect the various synths in their studios to a single master sequencer. When comput-

ers became more powerful software MIDI sequencers appeared, and MIDI was used as the

backbone of increasingly-complex scores. MIDI continues to be popular today amongst

composers working with electronic tools.

Miller Puckette’s original version of Max was written primarily for manipulation of

the MIDI protocol. Max provided composers working with MIDI equipment a graphical

environment in which to rapidly create maps of data flow: MIDI could be input into the

computer or generated internally, operated upon by some Max programming, and output

again to generate noise on an external synthesizer. Although the programming model has

changed subtly and a lot of functionality has been added since those original days, much of

what was available then to the Max programmer remains in the language.

The original version of Max, written in 198x by Miller Puckette while working at IR-

CAM, was written primarily for manipulation of the MIDI protocol. Max provided com-

posers working with MIDI equipment a graphical environment in which to rapidly create

maps of data flow: MIDI could be input into the computer or generated internally, oper-

ated upon by some Max programming, and output again to generate noise on an external

synthesizer. Although the programming model has changed subtly and a lot of functional-

ity has been added since those original days, much of what was available then to the Max

programmer remains in the language.

The basic building block of Max programming is called an object. Like many object-

A.2 Messages 100

Figure A.2. Max patch that pitches all incoming MIDI data up an octave

priented programming languages, Max is made up of many classes of objects, each of

which has a unique behaviour. Different objects can be used together in different ways

to accomplish the desired programming task. At the time of writing, objects for the Max

environment can be programmed in C, Java, or JavaScript. Third-party objects provide

support for PERL, Python, and some other less well-known scripted languages.

For example, have a look at Figure A.2. What you might call a program in another

language is called a patch in Max: this simple patch contains three objects, each of which

is visually represented by a grey box. The class of a Max object is defined by the text

contained within its box. The notein class is one of several classes designed to receive

MIDI input from the outside world. Max is able to receive MIDI input through a standard

MIDI interface, the kind that one could use with a commercial sequencing package such as

EMagic’s Logic or Steinberg’s Cubase.

Notice that this notein object is connected to the other objects via some straight black

lines. These connections are called patch cords, and like the similarly named cables that

connect different components of a modular synthesizer together, the patch cords in Max

define the path of data flow and allow objects to act together. Data emanates outwards from

the bottom of a object into the top of another object; the notein object in this example has

three outlets which represent, from right to left, the MIDI channel, velocity, and pitch of a

note event.

A.3 Signals 101

The + 12 object takes the integer input from the pitch outlet of the notein object, adds

12, and outputs the result. This is then passed to the noteout object, which will output the

altered MIDI information out the interface, presumably to a sound generator of some sort.

The function of this simple patch, therefore, is to shift incoming note events up an octave

in pitch.

All of the data flowing in Figure A.2 is integer data. As primitives in its message

passing architecture Max is able to pass 32-bit integers, 32-bit floating-point values, and

symbols. Additionally, a message can consist of any combination of these data types com-

bined into a multi-element list. Since a 32-bit value can be used to reference an address in

memory, some objects pass pointers which they dereference internally to operate on more

complicated data structures.

Programming a Max object consists of defining a set of responses to incoming mes-

sages. For instance, the + object in Figure A.2 has been designed to respond to incoming

integers by adding the addend argument, in this case 12, to the input and sending the result

out the outlet. Methods can be defined to respond generally to any of the primitive types,

or specifically to a named message.

A.3 Signals

In 1998, the Max universe was extended with the addition of MSP, a set of objects that

enables the processing of signals using the Max paradigm of object-oriented programming

with boxes and patch cords. Unlike messages, which are not necessarily connected with any

notion of time, signals consist of a steady stream of data, each sample equally spaced apart

in time. At CD audio rate, a signal contains 44100 samples (pieces of data) every second.

Software that operates on this stream of signal data must process every one of these samples

- in practical terms, this can place considerable demands on the computational resources

available.

Furthermore, to ensure that the processing of samples keeps up with the demand for

A.4 Matrices 102

samples by the digital to analog converter, the DSP engine that handles signals in Max/MSP

must process samples no slower than the rate specified by the audio sampling rate. At

CD audio rate, this means that the DSP engine must process the data no slower than one

sample every 1/44100 = 0.0000226757 seconds. Since the clock rate of a modern OS

X or Windows XP CPU is typically much greater than the CD audio sampling rate, one

might assume that this rate of calculation is easily met. However, the number of cycles

used for a single sample of data can be arbitrarily large, depending on the signal network

that the software has implemented. Also, many simultaneous channels of signal data may

be active at once - music studios with as many as 64 audio output channels coming from a

computer are not uncommon. Finally, modern multitasking operating systems demand that

many separate processes be shared between the available computational resources - unlike

some older operating systems, such as Mac OS 9 and earlier, it is no longer possible to

write a piece of software that monopolizes the computer. All of these factors contribute

to an environment that demands efficiency in the processing of signal data. Events, on the

other hand, can be generated and processed at a non-uniform rate.

A.4 Matrices

Jitter was introduced in 2002, and with it the matrix was introduced as a new data type that

”piggybacks” onto the Max event model. The ”matrix” message is followed by an integer

whose contents are actually a pointer in memory to the location of a large data set. Object

operators must peek into this memory location to obtain the dimensions of the data.

A.5 The Threading Model

Obviously it makes more sense to think in terms of signals when the values will be rapidly

changing, and more sense to think in terms of events when changes occur less regularly.

From a computational perspective, signals are much more demanding. However, in a per-

A.5 The Threading Model 103

formance perspective signals have the practical advantage of being sample-synchronous

with the signal-data that will result from their analysis.

Some human ears perceive frequencies as high as 20 kHz, whereas our eyes refresh

the image that’s sent to our brain at a rate as much as three orders of magnitude lower.

Correspondingly, MSP operates with very strict timing, and Jitter does not. In fact, Jitter

was designed so that its frame rate adapts to the processing power available after audio

and high-priority event processing has finished. The operation of this variable frame-rate

architecture involves a system of event queues and priorities which is the subject of the

remainder of this paper.

The internal Max/MSP ”engine” changed a great deal during the transition from the

cooperative multitasking world of Mac OS 9 to the pre-emptive multitasking environments

of Mac OS X and Windows XP. In version 4.5 of Max/MSP/Jitter there are three primary

threads of execution. The first is called the main thread this low priority thread is respon-

sible for bursty, expensive operations, such as the servicing of the user interface objects.

When you use the mouse to click on a button object or change the value in a number box,

the main thread is where the results of the user interface action are calculated and the screen

is redrawn. The high priority scheduler thread operates on time-sensitive data, such as the

bytes input through MIDI interfaces, or bangs emanating from a clocked object like metro.

The very high priority thread that calculates the MSP signal vectors is called the perform

thread.

Although the perform thread is given a higher priority in the operating system’s thread

scheduling mechanism than the scheduler thread, and the scheduler a higher priority than

the main, in a pre-emptive multitasking operating system any thread can interrupt any other

at any time. Indeed, on a computer with more than one CPU, more than one of these threads

can be executing simultaneously. This can lead to confusing situations for the novice (or

experienced!) Max programmer when a patch has data that flows in different threads, and

processes can interrupt one another in the midst of a calculation. The organization of the

scheduler thread is further complicated by two options that can be set in Max’s DSP Sta-

A.5 The Threading Model 104

tus dialog. If overdrive is disabled, all scheduler data is processed in the main thread. If

overdrive and scheduler in audio interrupt are both enabled, all scheduler data is processed

in the perform thread immediately prior to the calculating of the signal vector. If over-

drive is enabled but scheduler in audio interrupt is not enabled, the scheduler thread exists

normally. These three configurations allow the Max programmer to tailor the execution of

high-priority events to their needs: disabling overdrive removes the special status of sched-

uler messages but increases efficiency through the elimination of the additional thread,

whereas executing the scheduler in the perform thread ensures the most accurate timing but

reduces the amount of time the perform thread has available to calculate the signal vector.

With the latter option one must be careful to keep the scheduler operations very short. A

lengthy scheduler process increases the risk of exceeding the amount of time available to

process the signal vector, which may result in audible glitches.

Regardless of the configuration of the scheduler, if the processing resulting from a

clocked action is expensive it is usually wise to transfer the execution of the processing

to the main thread, where a lengthy operation will only delay the execution of other time-

insensitive actions. This can be accomplished using the defer object or jit.qball. Con-

versely, execution can be transferred from the main thread to the scheduler thread using the

delay object with an argument of 0. There are objects that operate in both threads: qmetro,

for instance, functions as a metronome internally by using the scheduler thread to clock

when bangs should be output, but instead of sending the bangs in the scheduler thread it

defers their output to the main thread. This deferral is done using an usurp mechanism:

if a message is waiting in the main thread’s queue and has not yet been output, any new

message coming from the same object will replace the old message in the queue.

Figure A.3 provides an illustration of the usurp mechanism in action. The two counter

objects in Figure A.3 are deferred to the main thread counter a uses an usurp mechanism

and counter b does not. Figure A.4 illustrates a schedule of executing messages as they are

passed from the scheduler thread to the main thread. On the first line counter a has sent out

a 1, and this message is placed in the main thread’s queue. The second line sees counter

A.5 The Threading Model 105

Figure A.3. An illustration of the usurp mechanism used in a Max patch.

queue
(main thread)

a 1

counter b
(scheduler thread)
deferred

0

1

2

a 1 b 1b 1

a 2 b 1

b 2 b 1b 2

a 3 b 2 b 1

b 3 a 3 b 2 b 1b 3

a 4 b 2 b 1

counter a
(scheduler thread)
usurped

a 1

a 2

a 3

a 4

Figure A.4. Time sequence of messages running through the patch in Figure A.3.

A.5 The Threading Model 106

matrix_calc

main thread work thread A work thread B ...

process

(wait)

join

process

process

Figure A.5. An illustration of the execution flow in a Jitter object’s matrix processing

method.

b output a 1, which is also placed on the queue. On the third line counter a outputs a 2,

which, because of the usurp mechanism, replaces the 1 from counter a that was waiting to

be output. The fourth line illustrates the main thread’s processing of the first event in the

queue, as well as the output of a 2 from counter b. The fifth line shows the output of 3

from counter a, which is added to the front of the queue because no other messages from

counter a are waiting to be output. On the sixth line the 3 message from counter b is placed

at the front of the queue. The seventh line shows the processing and removal of counter

b’s 3 message, as well as the replacement of the 3 from counter a with the new output of 4

because of the usurping mechanism.

In the case of qmetro, the usurp mechanism ensures that only a single bang from the

qmetro is ever waiting to be output in the main thread’s queue. In a situation where a

clocked object is connected to a network of Max objects that perform some expensive

computations, and bangs are output more quickly than the network can perform the com-

putations, the usurping mechanism prevents stack overflow. Networks of Jitter objects that

operate on video matrices iterate over many thousands of pixels. Accordingly, these de-

A.5 The Threading Model 107

manding calculations typically take place in the main thread. In fact, on multi-processor

machines Jitter maintains a pool of threads for its own use in iterating over large matrices.

Figure A.5 shows the execution flow in the matrix calc method of a multiprocessor-capable

Jitter object. The Max programmer need not think about these extra threads, other than to

know that they can significantly speed up iteration over large matrices.

It is common to drive a Jitter network with a qmetro object set to a very short period

between bangs. Because of the usurping mechanism discussed above, the result is that the

Jitter network will calculate new frames as quickly as possible given the computational

resources it has available. Because the scheduler thread and perform thread execute con-

currently, processing of audio and time-dependent events is not affected. The frame rate

of the video output is dependent on the available computational resources. Since a mod-

ern operating system typically operates several dozen processes in the background, each

of which requires a varying amount of time to be serviced, the available computational

resources are constantly fluctuating. Therefore the frame rate of the video output also fluc-

tuates. Luckily, the eye does not have the same stringent periodic requirements as the ear.

This variable frame-rate architecture requires a different mind-set from that required by

MSP when evaluating the computational load of a patch. Because it has a fixed rate at

which it must process samples, with MSP the computational load can be defined as the

ratio of the time taken to calculate a single sample to the period of the audio signal. On

the other hand, driving a Jitter network with a quickly resetting qmetro as described above

effectively means that the Jitter processing will suck up all available processing power after

the perform and scheduler threads have done their work. The best way to estimate the dif-

ferent computational loads of different Jitter networks is therefore to compare their frame

rates, something that is easily done with the fpsgui object, a graphical object that can be

connected anywhere in the network to provide valuable feedback about the frame rate, data

type of the matrix, and other information. It is worth noting that the frame rate of the com-

puter’s monitor or video projector is a practical upper limit on the rate that output imagery

can be updated.

Appendix B

The Jitter Signal-Visualization Objects

Shortly after beginning to experiment with gesture signals it became apparent that a set

of tools to visualize the signals was lacking. Unlike Max events, for which there exist

numerous user interface objects that one can use to monitor data values as they flow through

a patch, the set of objects to monitor MSP signals was limited. The objects that did exist,

such as the oscilloscope-emulating scope˜, were designed with the expectation that the

signals they would be monitoring would oscillate about the zero point like a standard audio

signal. Furthermore, synchronously visualizing an arbitrary number of signals in real-time

was not possible. So a toolkit was built to provide Max/MSP/Jitter users with improved

signal-visualization capabilities; these tools have proven themselves as extremely useful in

assessing the performance of and debugging algorithms operating on the gesture data.

The design of the toolkit was kept flexible by implementing a bridge between the signal

world of MSP and the matrix world of Jitter. Once in Jitter, not only can the signal data

be rendered in any of the various visual forms that Jitter allows, it can be used for non-

visualization purposes. One example use is frame-based processing of the signal data by

Jitter objects, which is conceptually much simpler - rather than build networks that operate

on a sample at a time and maintain complicated index signals, Jitter supports the type of

block operations that a frame-based algorithm makes use of.

To translate from the synchronous signal world of MSP to the asynchronous, frame-

based Jitter paradigm is done with the jit.catch˜ object, which works as follows: in the

signal processing thread, incoming vectors of MSP signal data are written into an internal

Appendix B 109

circular data buffer. When the object receives a bang a new matrix is created and populated

with floating-point data from the internal buffer. The format of the data written to the

matrix is dependent on an attribute of the object called the mode: mode 0 outputs all the

data received since the last bang; mode 1 outputs the most recent n samples where n is the

value of an attribute called the framesize; mode 2 outputs all the samples that have been

received since the last bang as a two-dimensional matrix of width n with variable height,

with any leftover samples saved for the next bang; and mode 3 outputs the most recent

n samples before the point where the trigger channel (set by the trigchan attribute) has

crossed the trigger threshold (set by the trigthresh attribute.)

In Figure B.1 the jit.catch˜ object is taking two input signals. jit.catch˜ handles multiple

signal inputs by multiplexing the data into multiple planes; the two-channel input here

means that every time it receives a bang from the qmetro object it will output a 2-plane

matrix. The object is in trigger mode - note that the slower of the two sine waves is about

at the middle of the graph on the right edge. This is the default trigthresh value of 0.

The jit.graph object takes a one-dimensional matrix, such as the one that jit.catch˜ pro-

duces, and renders it as a two-dimensional plot. jit.graph has various drawing modes -

points, lines, areas, and bipolar areas can be rendered - and colors for individual signals

can be set individually and blended by using the outname and clearit attributes.

A complimentary object called jit.release˜ is the converse to jit.catch˜: it takes floating-

point matrices as input and streams out signals. Although it is important in some situations,

such as when you’re using Jitter to do real-time frame processing on signal data, it is not

used in the context of the performance instrument that is the topic of this thesis, so we

won’t discuss it any further.

Appendix B 110

Figure B.1. An example of the jit.catch˜ and jit.graph objects in action.

Figure B.2. An example of using multiple jit.graph objects and the clearit and outname

attributes to composite multiple graphs and colors.

Appendix C

Sequential Analysis

Simply put, sequential analysis is statistical analysis where the sample size is not fixed in

advance. The decision to terminate an experiment depends on prior observations. Sequen-

tial Analysis can arrive at a decision much sooner and with fewer observations than equally

reliable test procedures based on a pre-determined number of observations. The brief de-

scription of the theory that follows is a summary of pertinent sections from Wald’s classic

text on the subject [44].

C.1 Preliminaries

Consider a method of testing a hypothesis H: at each stage of a experiment, a decision

has to be made between 1. accepting the hypothesis H , 2. rejecting the hypothesis H , and

3. continuing the experiment by incorporating another observation. At the mth trial our

collected data (x1, x2, ..., xm) will be a member of an m-dimensional sample space that can

be split into three mutually exclusive parts: a region of acceptance R0
m, a region of rejection

R1
m, and a region of indecision Rm. The fundamental problem in the theory of sequential

tests is to properly define these three sets.

We assume that the distribution of x is known except for the values of a finite number

of parameters θ = (θ1, ..., θk). Since the distribution of x is determined by the parameter

point θ, the probability of accepting H0 will be a function of θ; we call this function the

operating charateristic function and denote it as L(θ).

C.2 The Sequential Probability Ratio Test 112

Let the random variable of the number of observations required by a sequential test to

reach a decision be represented by n. For any given test procedure the expected value of

n depends only on the distribution of x, and since the distribution of x depends only on θ,

the distribution of n depends only on θ. The expected value of n at a given value of θ can

be denoted as Eθ(n) - this can also be called the average sample number function.

Defining a sequential test requires investigation of the preferences for rejection or ac-

ceptance of the null hypothesis H0 over the parameter space of θ. It is necessary to divide

this space into three mutually exclusive zones: a zone where acceptance of H0 is strongly

preferred, a zone where rejection of H0 is strongly preferred, and a zone where neither

acceptance nor rejection is strongly preferred. We use these zones when formulating re-

quirements for L(θ). In the zone of indifference we don’t impose any conditions on the

behaviour of L(θ). For any θ in the zone of preference for acceptance the probability of

rejecting the hypothesis H0 should be less than or equal to a value α. For any θ in the zone

of preference for rejection the probability of accepting H0 should be less than or equal to

a value β. In other words, in the zone of acceptance 1 − L(θ) ≤ α, and in the zone of

rejection L(θ) ≤ β.

C.2 The Sequential Probability Ratio Test

Let f(x, θ) denote the distribution of the random variable x whose successive observations

are x1, x2, ..., let H0 be the hypothesis that θ = θ0, and let H1 be the hypothesis that θ = θ1.

For any m the probability that a sample x1, ..., xm is obtained is given by

p1m = f(x1, θ1)...f(xm, θ1) (C.1)

when H1 is true, and

p0m = f(x1, θ0)...f(xm, θ0) (C.2)

C.2 The Sequential Probability Ratio Test 113

when H0 is true. The sequential probability ratio test is defined by choosing two positive

constants A and B, B < A. At the mth trial of the experiment the ratio of r = p1m/p0m is

compared to these constants. If r < B the experiment is terminated with acceptance of the

hypothesis H0; if r > A the experiment is terminated with rejection of the hypothesis H0;

if B < r < A the experiment continues.

The constants A and B are determined so that the test will have the prescribed strength

(α, β). Define a sample set of type 0 as one that leads to the acceptance of H0 and a sample

set of type 1 as one that leads to the rejection of H0 and acceptance of H1. The probability

of any sample of type 1 is at least A times as large under hypothesis H1 as under H0.

Therefore the probability measure of the totality of all samples of type 1 is also at least A

times as large under H1 as under H0. The probability measure of the totality of all samples

of type 1 is the same as the probability that the sequential process will terminate with the

acceptance of H1. But we set this probability to be equal to α when H0 is true and to 1 = β

when H1 is true. Thus we obtain

1− β ≥ Aα (C.3)

which we can write as

A ≤ 1− β

α
(C.4)

Thus, (1− β)/α is an upper limit for A. The lower limit for B can be derived in a similar

way:

B ≥ β

1− α
(C.5)

These inequalities give us upper and lower boundaries for A and B, but not exact values.

Simply setting A and B to be equal to the expressions on the right hand sides of equations

C.4 and C.5, respectively, does not result in any appreciable increase in the value of either

α or β. Furthermore, the increase in the necessary number of observations caused by the

C.2 The Sequential Probability Ratio Test 114

use of these simplified expressions will generally only be slight.

When the data is distributed normally, the probability densities of the samples are given

by

p0m =
1

2πm/2σm
e−

1
2σ2

∑m

α=1
(xα−θ0)2 (C.6)

if θ = θ0 and

p1m =
1

2πm/2σm
e−

1
2σ2

∑m

α=1
(xα−θ1)2 (C.7)

if θ = θ1. By taking logarithms and simplifying, the test inequality can be written as

log
β

1− α
<

θ1 − θ0

σ2

m∑
α=1

xα +
m

2σ2
(θ2

0 − θ2
1) < log

1− β

α
(C.8)

Figure C.1 illustrates the application of this test procedure when testing if the mean of

a normal random variable is below a certain value. The vertical axis is the sum of the input

random variable, and the horizontal axis represents successive trials of the experiment. If

the sum of successive samples exceeds the upper threshold the hypothesis is rejected; if

the sum falls below the lower threshold the hypothesis is accepted; while the sum stays in

between the two thresholds the test continues.

The operating characteristic function of a sequential probability ratio test with A =

(1− β)/α and B = β/(1− α) can be approximated as

L(θ) ∼
(1−β

α
)
h − 1

(1−β
α

)
h − (β

1−α
)
h (C.9)

where when x is normally distributed with unknown mean θ and known variance σ2, the

value of h is given by

h(θ) =
θ1 + θ0 − 2θ

θ1 − θ0

(C.10)

The expected length of the test can be approximated by

C.2 The Sequential Probability Ratio Test 115

rejection threshold

acceptance threshold

continue test

sample index m

su
m

 o
f i

np
ut

Figure C.1. An illustration of the sequential test procedure when testing if the mean of a

normal random variable is below a certain value. If the sum of successive samples exceeds

the upper threshold the hypothesis is rejected; if the sum falls below the lower threshold the

hypothesis is accepted; while the sum stays in between the two thresholds the test continues.

C.2 The Sequential Probability Ratio Test 116

Eθ(n) ∼ L(θ) log B + [1− L(θ)] log A

Eθ(z)
(C.11)

Appendix D

The wald˜ external

The wald˜ object implements a sign detector that follows the envelope of an incoming

signal. The goal is to detect transitions across the zero line. The code is below.

/* wald˜

envelope following using the wald’s sequential analysis.

*/

#include "ext.h"

#include "math.h"

#include "z_dsp.h"

#define VERSION_STRING "wald˜ 2006.10.26 bugs? bbn@saoul.ca"

void *wald_class;

typedef struct _wald {

t_pxobject l_obj;

float alpha, beta, theta1, theta0, variance, acceptthresh, rejectthresh, n, threshinc, thetafrac,

original_acceptthresh, original_rejectthresh;

float positive,

sum;

void *infoout;

} t_wald;

t_int *wald_perform(t_int *w);

void wald_dsp(t_wald *x, t_signal **sp, short *count);

void wald_assist(t_wald *x, void *box, int msg, int arg, char *dst);

void *wald_new(t_symbol *s, short argc, t_atom *argv);

void wald_alpha(t_wald *x, double alpha);

void wald_beta(t_wald *x, double beta);

void wald_theta(t_wald *x, double theta);

void wald_variance(t_wald *x, double variance);

void wald_n(t_wald *x, double n);

void wald_thetafrac(t_wald *x, double t);

void calc_threshes(t_wald *x);

Appendix D 118

void main(void) {

setup((t_messlist **)&wald_class,(method)wald_new, (method)dsp_free,

(short)sizeof(t_wald), 0L, A_GIMME, 0);

addmess((method)wald_dsp, "dsp", A_CANT, 0);

addmess((method)wald_assist, "assist", A_CANT, 0);

addmess((method)wald_alpha,"alpha",A_DEFFLOAT,0);

addmess((method)wald_beta,"beta",A_DEFFLOAT,0);

addmess((method)wald_variance,"variance",A_DEFFLOAT,0);

addmess((method)wald_n, "n", A_DEFFLOAT, 0);

addmess((method)wald_thetafrac, "thetafrac", A_DEFFLOAT, 0);

dsp_initclass();

post(VERSION_STRING);

}

t_int *wald_perform(t_int *w) {

t_float *sigin = (t_float *)(w[1]);

t_wald *x = (t_wald *)(w[2]);

int n = (int)(w[3]);

t_float *trigOut =(t_float *)(w[4]);

t_float *sumOut = (t_float *)(w[5]);

t_float *acceptout = (t_float *)(w[6]);

t_float *rejectout = (t_float *)(w[7]);

float in,

sum = x->sum,

positive = x->positive,

acceptthresh = x->acceptthresh,

rejectthresh = x->rejectthresh,

threshinc = x->threshinc;

while (--n) {

sum += *++sigin;

*++acceptout = acceptthresh;

*++rejectout = rejectthresh;

*++sumOut = sum;

if (((positive > 0.) && (sum < acceptthresh)) || ((positive < 0.) && (sum > acceptthresh)))

{

x->positive *= -1.;

positive = x->positive;

sum = 0.;

calc_threshes(x);

acceptthresh = x->acceptthresh;

rejectthresh = x->rejectthresh;

threshinc = x->threshinc;

}

else if (((positive > 0.) && (sum > rejectthresh)) || ((positive < 0.) && (sum < rejectthresh)))

{

sum = 0.;

acceptthresh = x->original_acceptthresh;

rejectthresh = x->original_rejectthresh;

threshinc = x->threshinc;

}

else

{

acceptthresh += threshinc;

Appendix D 119

rejectthresh += threshinc;

}

*++trigOut = positive;

}

x->acceptthresh = acceptthresh;

x->rejectthresh = rejectthresh;

x->sum = sum;

return (w+8);

}

void wald_alpha(t_wald *x, double alpha)

{

if (alpha > 0.)

x->alpha = alpha;

calc_threshes(x);

}

void wald_beta(t_wald *x, double beta)

{

if (beta > 0.)

x->beta = beta;

calc_threshes(x);

}

void wald_variance(t_wald *x, double variance)

{

if (variance > 0.)

x->variance = variance;

calc_threshes(x);

}

void wald_n(t_wald *x, double n)

{

if (n > 0.)

x->n = n;

calc_threshes(x);

}

void wald_thetafrac(t_wald *x, double t)

{

if ((t >= 0.) &&(t <= 1.0))

x->thetafrac = t;

calc_threshes(x);

}

void calc_threshes(t_wald *x)

{

x->theta0 = (-x->positive) * sqrt(-2*x->variance / x->n * (log((1.0-x->beta)/x->alpha) + (1-x->alpha)*(log(x->beta/(1-x->alpha)) - log((1-x->beta)/x->alpha))));

x->theta1 = (-x->theta0) * (1. - x->thetafrac);

x->theta0 = x->theta0 * x->thetafrac;

Appendix D 120

x->acceptthresh = x->variance / (x->theta1 - x->theta0) * log(x->beta / (1 - x->alpha));

x->original_acceptthresh = x->acceptthresh;

x->rejectthresh = x->variance / (x->theta1 - x->theta0) * log((1 - x->beta) / x->alpha);

x->original_rejectthresh = x->rejectthresh;

x->threshinc = (x->theta0 + x->theta1) / 2.;

}

void wald_dsp(t_wald *x, t_signal **sp, short *count) {

dsp_add(wald_perform, 7, sp[0]->s_vec-1, x, sp[0]->s_n+1, sp[1]->s_vec-1, sp[2]->s_vec-1, sp[3]->s_vec-1, sp[4]->s_vec-1);

}

void *wald_new(t_symbol *s, short argc, t_atom *argv) {

t_wald *x = (t_wald *)newobject(wald_class);

dsp_setup((t_pxobject *)x,1);

x->infoout = outlet_new((t_object *)x, "anything");

outlet_new((t_object *)x, "signal");

outlet_new((t_object *)x, "signal");

outlet_new((t_object *)x, "signal");

outlet_new((t_object *)x, "signal");

x->positive = 1.0;

x->alpha = 0.0001;

x->beta = 0.0001;

x->variance = 0.00001;

x->sum = 0.;

x->n = 10;

x->threshinc = 0.;

x->thetafrac = 1.;

calc_threshes(x);

return (x);

}

void wald_assist(t_wald *x, void *box, int msg, int arg, char *dst)

{

if (msg==1) { //inlets

switch (arg) {

case 0: strcpy(dst,"(signal) data"); break; }

} else if (msg==2) { // outlet

switch (arg) {

case 0: strcpy(dst,"(signal) current sign"); break;

case 1: strcpy(dst,"(signal) running sum"); break;

case 2: strcpy(dst,"(signal) acceptance threshold"); break;

case 3: strcpy(dst,"(signal) rejection threshold"); break;

}

}

};

Appendix E

Java Calibration Code

The calibration has three stages: in the first stage, both sticks are moved through their entire

vertical range of motion, in the second stage both sticks are rubbed over the surface of the

drum, and in the third stage the sticks are motionless on the surface of the drum. For each

of the stages the data is collected into a buffer and the radioDrumCalibrator class analyzes

the results and sends the proper parameters out to the MSP objects that implement the

scaling and event detection. Parameters for α, β, and n can be modified at any time from

the top level of the patch. Calibration data can be saved and recalled through a parameter

management scheme.

The radioDrumCalibrator mxj Java object handles the logic of the calibration. The code

is reproduced below.

import com.cycling74.max.*;

import com.cycling74.msp.*;

/*

radioDrumCalibrator

ben nevile, march 30 2005

the idea is that a 4-channel buffer˜ of calibration data is available. the buffer˜

only contains the data for one stick, but of course in the patch the calibration data

will be collected for both sticks simultaneously.

in this buffer˜, the stick will start at the z-threshold -- that is,

the user will begin the calibration procedure with the sticks lying on

the surface of the drum for at least one second.

then they will move the stick all around to what they think will be the

maximum and minimum points of signal strength. they will also strike the

surface of the drum with the stick with maximum and minimum strength.

then they will signal that the calibration is over.

this java code will analyze the buffer˜ and determine the multiplicative and

additive constants necessary to scale the x,y and z signals within a friendly range,

Appendix E 122

as well as the thresholds for the peak-picking algorithm..

April 18, 2006

Breaking the calibration into three separate routines,

triggered by the following messages:

"vertical" - Performer should move sticks from as far away as possible

to as close as possible. The performer should hit the surface as hard as possible.

Calibrator will calculate the minimum and maximum Z plus the maximum V.

"horizontal" - With sticks on surface, performer should move them horizontally

around the surface, making sure to get to all parts of the surface that will be hit.

Calibrator will calculate the average Z position (surface threshold) and the ranges

of the X and Y params.

"noise" - Stick should remain motionless. Calibrator will quantify the noise.

*/

public class radioDrumCalibrator extends MaxObject

{

private static final int numChans = 4;

private static final int drumBottom = 2;

private static final int drumTop = 3;

private static final int drumRight = 1;

private static final int drumLeft = 0;

private String bufferName = null;

private float zstddev = 3.0f;

private float vstddev = 3.0f;

private float vrevstddev = 2.0f;

// eventually this last one will be called aThreshStandardDeviations

private float zThreshAverage = 0.0f;

private float zThreshStdDev = 0.0f;

private float vThreshStdDev = 0.0f;

/**

* minmaxSignal will always contain the minimum and maximum values for each signal.

* All calibration params will be recalculated if minmaxSignal is awry.

* we initialize it by default to null.

*/

private float minmaxSignal[][] = null;

private static float BIG_NUMBER_THAT_SIGNAL_SHOULD_ALWAYS_BE_SMALLER_THAN = 99999.f;

private static float SMALL_NUMBER_THAT_SIGNAL_SHOULD_ALWAYS_BE_BIGGER_THAN = -99999.f;

/**

* same deal for minmaxZ.

* if noise calibration is done before minmaxZ has been initialized, noise calib

* just stores the data and waits for vertical calib before it will output data.

*/

private float minmaxZ[] = null;

private float minmaxVZ[] = null;

/**

* We will maintain all three of these buffers so that we can recalculate

* if we need to change the minmaxSignal numbers.

Appendix E 123

* for instance, say you do a vertical calibration and then do a horizontal calibration,

* but the horizontal results in larger maxmin values than the vertical. the vertical

* would need to be recalculated.

*/

private float[][] verticalData = null;

private float[][] horizontalData = null;

private float[][] noiseData = null;

private void recalc(float[][] data)

{

//initialize if necessary

if (minmaxSignal == null)

{

minmaxSignal = new float[numChans][2];

for (int i=0;i<numChans;i++)

{

minmaxSignal[i][0] = BIG_NUMBER_THAT_SIGNAL_SHOULD_ALWAYS_BE_SMALLER_THAN;

minmaxSignal[i][1] = SMALL_NUMBER_THAT_SIGNAL_SHOULD_ALWAYS_BE_BIGGER_THAN;

}

}

//determine the minimum and maximum values for each channel

float tempMinMaxSignal[][] = new float[numChans][];

for (int i=0;i<data.length;i++) {

tempMinMaxSignal[i] = minmax(data[i]);

}

//update vals if necessary

for (int i=0;i<numChans;i++)

{

if (tempMinMaxSignal[i][0] < minmaxSignal[i][0])

minmaxSignal[i][0] = tempMinMaxSignal[i][0];

if (tempMinMaxSignal[i][1] > minmaxSignal[i][1])

minmaxSignal[i][1] = tempMinMaxSignal[i][1];

}

//output new values to Max patch

for (int i=0;i<numChans;i++)

{

outlet(0, "minmaxSignal",

new Atom[] {Atom.newAtom(i),

Atom.newAtom(minmaxSignal[i][0]),

Atom.newAtom(minmaxSignal[i][1])});

}

//update other components of calibration that depend on this data

recalcVertical();

recalcHorizontal();

recalcNoise();

}

public radioDrumCalibrator(Atom[] args)

{

declareIO(1,2);

declareAttribute("bufferName");

declareAttribute("zstddev",null,"setzstddev");

declareAttribute("vstddev",null,"setvstddev");

Appendix E 124

declareAttribute("vrevstddev",null,"setvrevstddev");

}

public void setzstddev(Atom a[])

{

zstddev = a[0].toFloat();

outputThresholds();

}

public void setvstddev(Atom a[])

{

vstddev = a[0].toFloat();

outputThresholds();

}

public void setvrevstddev(Atom a[])

{

vrevstddev = a[0].toFloat();

outputThresholds();

}

private void outputThresholds()

{

outlet(0, "zThresh", zThreshAverage-zstddev*zThreshStdDev);

outlet(0, "vThresh", 0.0f-vstddev*vThreshStdDev);

outlet(0, "vRevThresh", vrevstddev*vThreshStdDev);

}

public void analyze()

{

error("The analyze method has been deprecated. "+

"You are using an old version of the patch with a newer version of the "+

"radioDrumCalibrator.class file.");

}

private float[][] getData(String bufferName, int numberOfSamples)

{

//move data from buffer into java float arrays

float data[][] = new float[numChans][];

for (int i=0;i<numChans;i++) {

data[i] = MSPBuffer.peek(bufferName, i+1, 0, numberOfSamples);

if (data[i].length != numberOfSamples)

{

error("radioDrumCalibrator: "+

"there is a problem with the number of samples.");

return null;

}

}

return data;

}

private void copyData(float[][] A, float[][] B)

{

for (int c=0;c<A.length;c++)

for (int i=0;i<A[0].length;i++)

{

B[c][i] = A[c][i];

Appendix E 125

}

}

private void rescaleData(float[][] A)

{

for (int i=0;i<numChans;i++) {

float range = minmaxSignal[i][1] - minmaxSignal[i][0];

for (int j=0;j<A[i].length;j++)

A[i][j] = (A[i][j] - minmaxSignal[i][0])/range;

}

}

public void vertical(int numberOfSamples)

{

//check for user error

if (bufferName == null) {

error("radioDrumCalibrator: "+

"I need a buffer name");

return;

}

verticalData = getData(bufferName, numberOfSamples);

recalc(verticalData);

}

private void recalcVertical()

{

if (verticalData == null) return;

int numberOfSamples = verticalData[0].length;

//copy verticalData to local array

float data[][] = new float[numChans][numberOfSamples];

copyData(verticalData, data);

//rescale the input signal arrays between 0 and 1

rescaleData(data);

//find the minimum and maximum values z

float z[] = new float[numberOfSamples];

for (int i=0;i<numberOfSamples;i++) {

z[i] = calcZ(data[drumLeft][i], data[drumRight][i],

data[drumBottom][i], data[drumTop][i]);

}

minmaxZ = minmax(z);

//swap these two, because up is down and down is up

float ztemp = minmaxZ[0];

minmaxZ[0] = minmaxZ[1];

minmaxZ[1] = ztemp;

//output range to Max patch

outlet(0, "minmaxZ", new Atom[] {Atom.newAtom(minmaxZ[0]),

Atom.newAtom(minmaxZ[1])});

Appendix E 126

//rescale z

for (int i=0;i<numberOfSamples;i++)

z[i] = (z[i] - minmaxZ[0])/(minmaxZ[1]-minmaxZ[0]);

//calculate a z-velocity array and the minmax of it

float vz[] = new float[numberOfSamples-1];

for (int i=0;i<numberOfSamples-1;i++)

vz[i] = z[i+1]-z[i];

minmaxVZ = minmax(vz);

//output to the patch

outlet(0, "minmaxVZ", new Atom[] {Atom.newAtom(minmaxVZ[0]),

Atom.newAtom(minmaxVZ[1])});

}

public void horizontal(int numberOfSamples)

{

//check for user error

if (bufferName == null) {

error("radioDrumCalibrator: "+

"I need a buffer name");

return;

}

horizontalData = getData(bufferName, numberOfSamples);

recalc(horizontalData);

}

private void recalcHorizontal()

{

if (horizontalData == null) return;

int numberOfSamples = horizontalData[0].length;

//copy horizontalData to local array

float data[][] = new float[numChans][numberOfSamples];

copyData(horizontalData, data);

//rescale the input signal arrays between 0 and 1

rescaleData(data);

float x[] = new float[numberOfSamples];

float y[] = new float[numberOfSamples];

for (int i=0;i<numberOfSamples;i++) {

x[i] = calcXY(data[drumLeft][i], data[drumRight][i]);

y[i] = calcXY(data[drumBottom][i], data[drumTop][i]);

}

float minmaxX[] = minmax(x);

outlet(0, "minmaxX", new Atom[] {Atom.newAtom(minmaxX[0]),

Atom.newAtom(minmaxX[1])});

float minmaxY[] = minmax(y);

outlet(0, "minmaxY", new Atom[] {Atom.newAtom(minmaxY[0]),

Atom.newAtom(minmaxY[1])});

}

Appendix E 127

public void noise(int numberOfSamples)

{

//check for user error

if (bufferName == null) {

error("radioDrumCalibrator: "+

"I need a buffer name");

return;

}

noiseData = getData(bufferName, numberOfSamples);

recalc(noiseData);

}

private void recalcNoise()

{

if (noiseData == null) return;

int numberOfSamples = noiseData[0].length;

post("number of samples in use for noise calc:" + numberOfSamples);

//copy noiseData to local array

float data[][] = new float[numChans][numberOfSamples];

copyData(noiseData, data);

//rescale the input signal arrays between 0 and 1

rescaleData(data);

float z[] = new float[numberOfSamples];

for (int i=0;i<numberOfSamples;i++)

{

z[i] = calcZ(data[drumLeft][i], data[drumRight][i],

data[drumBottom][i], data[drumTop][i]);

}

// if we have no data for minmaxZ there’s no point calculating the

// noise stats now.

if (minmaxZ == null) return;

//rescale z

for (int i=0;i<numberOfSamples;i++)

z[i] = (z[i] - minmaxZ[0])/(minmaxZ[1]-minmaxZ[0]);

//calculate a z-velocity array and the minmax of it

float vz[] = new float[numberOfSamples-1];

for (int i=0;i<numberOfSamples-1;i++)

vz[i] = z[i+1]-z[i];

//rescale v so that negative range goes from 0 to -1

for (int i=0;i<numberOfSamples-1;i++)

vz[i] = (vz[i] - minmaxVZ[0])/(0.0f-minmaxVZ[0]);

//calc a z-acceleration array

float az[] = new float[numberOfSamples-2];

for (int i=0;i<numberOfSamples-2;i++)

az[i]= vz[i+1]-vz[i];

Appendix E 128

float azAverage= calcAverage(az);

float aStdDev = calcStdDev(az, azAverage);

Atom azmsg[] = new Atom[3];

azmsg[0] = Atom.newAtom("wald");

azmsg[1] = Atom.newAtom("variance");

azmsg[2] = Atom.newAtom(aStdDev*aStdDev);

outlet(0, azmsg);

azmsg[1] = Atom.newAtom("theta");

azmsg[2] = Atom.newAtom(aStdDev/10.);

outlet(0, azmsg);

zThreshAverage = calcAverage(z);

outlet(0, "zThreshAverage", zThreshAverage);

zThreshStdDev = calcStdDev(z, zThreshAverage);

outlet(0, "zThreshStdDev", zThreshStdDev);

float vThreshData[] = new float[vz.length];

for (int i=0;i<vThreshData.length;i++)

vThreshData[i] = vz[i];

float vThreshAverage = calcAverage(vThreshData);

vThreshStdDev = calcStdDev(vThreshData, vThreshAverage);

outlet(0, "vThreshStdDev", vThreshStdDev);

post("z SNR: ("

+1.0+")/("+zThreshStdDev+") -> "

+(20 * Math.log(1.0/zThreshStdDev)/Math.log(10)));

post("v SNR: ("

+(1.0)+")/("+vThreshStdDev+") -> "

+(20 * Math.log(1.0/vThreshStdDev)/Math.log(10)));

outputThresholds();

}

float calcAverage(float data[]) {

double total = 0.0;

for (int i=0;i<data.length;i++)

total += (double)data[i];

return (float)(total / ((double)data.length));

}

float calcStdDev(float data[], double average) {

double total = 0.0;

for (int i=0;i<data.length;i++) {

double diff = (double)data[i] - average;

total += diff*diff;

}

return (float)Math.sqrt(total/(double)(data.length-1));

}

//interpolates between 0 and 1 based on two signal strengths

float calcXY(float zeroSig, float oneSig) {

if (zeroSig + oneSig == 0.0f)

return 0.5f;

else

return oneSig/(zeroSig + oneSig);

}

//calculates Z value based on four sigs

Appendix E 129

float calcZ(float sigA, float sigB, float sigC, float sigD) {

return (sigA+sigB+sigC+sigD);

}

//returns (min, max) of the input array

private float[] minmax(float f[])

{

float max = f[0], min = f[0];

for (int i=0;i<f.length;i++)

if (f[i] > max) max = f[i];

else if (f[i] < min) min = f[i];

return new float[] {min, max};

}

}

Appendix F

The event˜ object

#include "ext.h"

#include "ext_obex.h"

#include "z_dsp.h"

#include <math.h>

// sample accurate event generator.

// like sample-and-hold, except that it outputs the sampled

// signals as float elements of a list.

#define EVENT_MAX_SIGNALS 32

void *event_class;

typedef struct _event

{

t_pxobject s_obj;

float s_prev;

float s_thresh;

void *float_outlet;

int numsignals;

void *clock;

t_float *eventbuffer;

long eventreadindex, eventwriteindex, eventbuffersize;

} t_event;

t_int *event_perform(t_int *w);

void event_dsp(t_event *x, t_signal **sp, short *count);

void event_thresh(t_event *x, double f);

void *event_new(t_symbol *s, short argc, t_atom *argv);

void event_assist(t_event *x, void *b, long m, long a, char *s);

void event_new_output(t_event *x, long numsigs, t_float **sig);

void event_tick(t_event *x);

void main(void)

{

setup((t_messlist **)&event_class,

(method)event_new,

(method)dsp_free,

(short)sizeof(t_event),

0L, A_GIMME, 0);

addmess((method)event_dsp, "dsp", A_CANT, 0);

addfloat((method)event_thresh);

Appendix F 131

dsp_initclass();

addmess((method)event_assist, "assist", A_CANT, 0);

}

void event_assist(t_event *x, void *b, long m, long a, char *s)

{

if (m==2) {

sprintf(s, "(float/list) signal values at time of trigger");

}

else if (m==1) {

switch (a) {

case 0: sprintf(s,"(signal) trigger input"); break;

default: sprintf(s, "(signal) value to sample"); break;

}

}

}

void event_dsp(t_event *x, t_signal **sp, short *count)

{

long *vector;

int i;

long size = (3 + x->numsignals) * sizeof(long);

long sigvs = (long)(sp[0]->s_n);

if (x->eventbuffer != NULL)

sysmem_freeptr(x->eventbuffer);

x->eventbuffersize = x->numsignals * (sigvs/2) + 1;

x->eventbuffer = (t_float *)sysmem_newptr(sizeof(t_float) * x->eventbuffersize);

x->eventreadindex = x->eventwriteindex = 0;

/* rationale for the above eventbuffer size:

the maximum number of events that can be detected in one signal vector is sigvs/2

with audio in interrupt on this size should be safe.

Need the +1 in there because with a vector size of 2, nothing ever gets output!

(see event_tick)

*/

vector = (long *)t_getbytes(size);

vector[0] = (long)x;

vector[1] = sigvs+1;

vector[2] = (long)(sp[0]->s_vec-1); //trigger

for (i=0;i<x->numsignals;i++)

vector[i+3] = (long)(sp[i+1]->s_vec-1);

dsp_addv(event_perform, 3 + x->numsignals, (void **)vector);

t_freebytes(vector,size);

}

t_int *event_perform(t_int *w)

{

t_event *x = (t_event *)(w[1]);

int n = (int)(w[2]);

t_float *trig = (t_float *)(w[3]);

t_float *in[EVENT_MAX_SIGNALS];

float prev = x->s_prev;

float thresh = x->s_thresh;

float current;

int numsignals = x->numsignals;

Appendix F 132

int i;

if (x->s_obj.z_disabled)

goto out;

for (i=0;i<numsignals;i++)

in[i] = (t_float *)(w[4+i]);

while (--n) {

current = *++trig;

for (i=0;i<numsignals;i++)

++(in[i]);

if (prev <= thresh && current > thresh)

event_new_output(x, numsignals, in);

prev = current;

}

x->s_prev = prev;

out:

return (w+4+numsignals);

}

void event_new_output(t_event *x, long numsigs, t_float **sig)

{

long i;

for (i=0;i<numsigs;i++)

{

x->eventbuffer[x->eventwriteindex] = *sig[i];

if (++(x->eventwriteindex) >= x->eventbuffersize)

x->eventwriteindex = 0;

}

clock_delay(x->clock, 0.);

}

void event_tick(t_event *x)

{

long i;

t_atom *outputfloats = (t_atom *)sysmem_newptr(sizeof(t_atom)*x->numsignals);

while (x->eventreadindex != x->eventwriteindex)

{

for (i=0;i<x->numsignals;i++) {

SETFLOAT(outputfloats+i, x->eventbuffer[x->eventreadindex]);

if (++(x->eventreadindex) >= x->eventbuffersize)

x->eventreadindex = 0;

}

outlet_list(x->float_outlet, 0L, x->numsignals, outputfloats);

}

sysmem_freeptr(outputfloats);

}

void event_thresh(t_event *x, double f)

{

x->s_thresh = f;

}

void *event_new(t_symbol *s, short argc, t_atom *argv)

{

t_event *x = (t_event *)newobject(event_class);

long numsignals = 1;

Appendix F 133

double thresh = 0.5;

int i;

if (argc > 0)

numsignals = atom_getlong(argv);

if (argc > 1)

thresh = atom_getfloat(argv+1);

if ((numsignals > 0)&&(numsignals <= EVENT_MAX_SIGNALS))

x->numsignals = numsignals;

else

x->numsignals = 1;

dsp_setup((t_pxobject *)x, x->numsignals + 1);

x->float_outlet = outlet_new((t_object *)x, 0L);

x->s_thresh = thresh;

x->s_prev = -1./0.0000000001;

x->clock = clock_new(x, (method)event_tick);

x->eventreadindex = 0;

x->eventwriteindex = 0;

x->eventbuffersize = 0;

x->eventbuffer = NULL;

return (x);

}

VITA

Surname: Nevile Given Names: Benjamin Bowles

Place of Birth: Vancouver, British Columbia, Canada

Educational Institutions Attended

University of Manitoba 1992 to 1996

Degrees Awarded

B.Sc.(Hons) University of Manitoba 1996

Honors and Awards

Harold R. Coish Memorial Scholarship 93-94
St. John’s College Alumni Scholarship 94-95

Journal Publications

1. Randy Jones and Ben Nevile, “Creating Visual Music in Jitter: Approaches and Tech-
niques”, Computer Music Journal, Fall 2005.

Conference Publications

1. Ben Nevile, Peter Driessen, W. Andrew Schloss, “Radio drum gesture detection sys-
tem using only sticks, antenna and computer with audio interface”, International
Computer Music Conference,, Fall 2006.

UNIVERSITY OF VICTORIA PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis to users of the University of Victoria Library, and
to make single copies only for such users or in response to a request from the Library of any
other university, or similar institution, on its behalf or for one of its users. I further agree
that permission for extensive copying of this thesis for scholarly purposes may be granted
by me or a member of the University designated by me. It is understood that copying or
publication of this thesis for financial gain by the University of Victoria shall not be allowed
without my written permission.

Title of Thesis:

Gesture analysis through a computer’s audio interface: The Audio-Input Drum

Author:
BEN NEVILE
December 15, 2006

THESIS WITHHOLDING FORM

At our request, the commencement of the period for which the partial licence shall operate
shall be delayed from December 15, 2006 for a period of at least six months.

(Supervisor)

(Department Chairman)

(Dean of Graduate Studies)

(Signature of Author)

(Date)

Date Submitted to the Dean’s Office:

	Supervisory Committee
	Abstract
	Table of Contents
	List of Figures
	List of Symbols
	Acknowledgement
	Introduction - Motivation
	Related and Previous Work
	 Leon Theremin and Capacitive Sensing
	 Relevant electronic drum research
	 The Radio Drum and Radio Baton
	 The Success of the Radio Drum

	The Audio-Input Radio Drum
	 Introduction
	 Data Input in Computers
	 The audio subsystem
	 Signal Input Approaches
	 The Rimas Box
	 The Teabox
	 The Chopper

	 The Audio-Input Drum
	 Demodulation

	Analyzing Gesture Data
	 Introduction
	 Parameter Estimation
	 Analysis of Noise
	 Averaging Filters
	 Height Estimation
	 Planar Estimation

	 Event Detection
	 Introduction
	 Detecting a hit
	 Sequential Analysis
	 wald˜ object implementation
	 The full hit detection algorithm

	 Responding to Signal Triggers in Max/MSP
	 The event˜ object

	Future Audio-Input Gesture Work
	 Signal-to-noise
	 Antennae Geometry and Positional Estimation
	 Visual feedback
	 New Modes
	 Non-artistic applications

	Bibliography
	Appendix The Architecture of Max/MSP/Jitter
	 Objects
	 Messages
	 Signals
	 Matrices
	 The Threading Model

	Appendix The Jitter Signal-Visualization Objects
	Appendix Sequential Analysis
	 Preliminaries
	 The Sequential Probability Ratio Test

	Appendix The wald˜ external
	Appendix Java Calibration Code
	Appendix The event˜ object

