
Radio drum gesture detection system using only sticks, antenna and
computer with audio interface

Ben Nevile
University of Victoria / Cycling ’74

bbn@saoul.ca

Peter Driessen
University of Victoria

peter@ece.uvic.ca

W. A. Schloss
University of Victoria

aschloss@finearts.uvic.ca

Abstract

We present the results of our ongoing project researching
a tighter coupling between computer and performer. The
audio-input radio drum is presented, a simplification of the
original apparatus that provides superior latency and res-
olution. Different demodulation schemes for the amplitude
modulated input signals are discussed. Techniques to analyze
gesture data are outlined, including eestimation of parame-
ters and detection of events. In the case of the latter, a sta-
tistical basis for making decisions in the presence of noise is
presented. The algorithm used to detect when the audio-input
radio drum has been hit is outlined.

1 Introduction
For many years computer technology has been used by

musicians to shape and synthesize sound, but to actually play
a computer with the dynamic feel of an acoustic instrument
remains difficult. At the root of the problem is the human-
computer interface: we need interfaces that feature very low
latency to enable the rapid sonic feedback loop that a mu-
sician enjoys with an acoustic instrument. We strive to sat-
isfy the 10ms low latency criterion establi shed for satisfac-
tory reactive performance systems (Wessel and Wright 2002),
and also want to minimize the amount of variation or slop
in the timing of our instrument. We want an interface with
enough dynamic range to allow expressive performances, and
the technology employed must be stable and predictable.

In Communicating with Meaningless Numbers (Zicarelli
1991) David Zicarelli points out that the performer-instrument
communication is better characterized by a continuous en-
gagement of control rather than by a few discrete events. Zi-
carelli argues that to find better methods of controlling sound
synthesis we ought to be transmitting data that is stripped of
all musical context. The stream of these ”meaningless” num-
bers can then be analyzed and interpreted in software.

This paper presents the results of our ongoing project re-
searching methods to create this flow of meaningless num-

bers between our computers and the gestural interface known
as the radio drum. Our approach is to transcode the gesture
data into the signal domain. In other words, we have cho-
sen to communicate, manipulate and analyze the gesture data
with the same isochronous mechanisms that we use to manip-
ulate audio data. This creates the tightest possible coupling
between input and output.

Several gesture input systems have been evaluated, in-
cluding CNMAT’s Connectivity Processor (Rimas Avizienis
2000), Electrotap’s Teabox (Allison and Place 2004), and our
own amplitude modulation toolkit. As we became more fa-
miliar with the technology in use in the radio drum, it be-
came apparent that there was a simpler solution that’s more
efficient, less latent, and more precise.

Next we’ll outline the apparatus and methods employed
to communicate the gesture data from the radio drum to the
computer. Following that we’ll discuss the analysis of signal
data, first generally and then in the specific context of the
radio drum. The relationship between events in the signal and
message domains is discussed, and we’ll present our solution
to the problem of how to detect when the surface of the drum
has been hit.

2 The Audio-Input Radio Drum
The idea of gesture sensing using capacitive moments was

first developed at Bell Labs by R. Boie (Boie, Ruedisueli, and
Wagner ). The original apparatus is outlined in figure 1: a
special control box drives the two drum sticks with frequen-
cies in the 50-55kHz range. This driving potential induces
the movement of charge on the four surfaces of the antenna.
These four signals are input into the control box, which de-
modulates the frequencies into DC signal levels that it can
then analyze to determine the three-dimensional position of
each stick, as well as determine when the drum has been hit.
Data is output from the control box using the MIDI protocol:
each of x, y, z and velocity in the case of a hit are reported as
7-bit MIDI messages. The x, y and z positions are sent to the



control box

computer

audio interfacemidi interface

computer

antennasticks

Figure 1: Old apparatus for the radio drum

computer 50 times a second.
The apparatus for our audio-input radio drum is outlined

in Figure 2. The driving signals sent to the sticks are gen-
erated by the audio outputs of a multi-channel sound device.
The outputs of the antenna are connected to the inputs of the
same multi-channel sound device. All interpretation of the
signals is handled in software. The control box is no longer
necessary, and MIDI is no longer needed.

In this audio input scheme the computer both generates
the driving signals and receives the signals produced by the
induced voltage changes in the antennae. Being a physi-
cal, electrodynamic system with scale much shorter than the
wavelength of the radiation, the transmission time from the
sticks to the antenna is virtually instantaneous. The latency
of the system is therefore exactly the round-trip latency of
the computer and audio device. With a professional quality
sound card this latency can be less than 5 milliseconds.

2.1 Carrier Frequencies
Using this new system we are free to choose the transmit-

ting frequencies that we send to the sticks. The two frequen-
cies must be spaced far enough apart so that the sidebands
created by the movement of the sticks do not spectrally over-
lap; figure 3 illustrates this idea. The spectral width of each
sideband is dependent on the physical nature of the interface;
in the case of our drum, it is reasonable to use 450 Hz, the
upper bound on the frequency of muscular contraction (Nakra

computer

audio interface

computer

antenna
sticks

Figure 2: Apparatus for the audio-input radio drum

frequency

spectral pow
er

Figure 3: Illustration of the input spectrum. Two carrier fre-
quencies must be chosen far enough apart so that their band-
widths do not significantly overlap. Bandpass filters are used
to isolate the carriers from one another.

2000). Note that when the stick makes contact with a solid,
unforgiving surface, high frequency components can be the
result. This could cause a problem when separating the two
channels of data, but we have not found this to be a problem
in practice.

We are of course limited to frequencies less than half of
the audio output device’s maximum sampling rate, which on
a modern device can be as high as 192kHz. Figure 4 shows
a plot of the antenna’s receiving power as a function of the
driving frequency. The vertical axis of the plot is scaled loga-
rithmically with base two and normalized relative to the maxi-
mum receiving power around 60kHz. Therefore one can think
of the value of the vertical axis as the number of bits lost
relative to the maximally efficient frequency. Another fac-



0 1 2 3 4 5 6 7 8 9 10

x 104

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
power of antenna response (log2 scale, lost bits) vs. frequency

frequency (Hz)

po
w

er
 o

f a
nt

en
na

 re
sp

on
se

 (l
og

2 
sc

al
e,

 lo
st

 b
its

)

Figure 4: Receiving power of the antenna versus the fre-
quency of the carrier. Note that the vertical axis is logarith-
mically scaled.

tor in choosing carrier frequencies is that operating a signal-
processing environment at high frequency is computationally
demanding. This is not because of the amount of calculating
involved, but rather primarily due to the amount of data that
needs to be moved through the computer’s IO subsystems.
In our performances we have found we achieve acceptable
performance characteristics when operating the audio device
with a sampling rate of 64kHz and generating carrier frequen-
cies of 26 and 30kHz.

2.2 Demodulation
Each input signal contains the two modulated carriers su-

perimposed, so filters are needed to seperate them. The ideal
box filter for a given carrier would be centered at the fre-
quency of that carrier, and would be just wide enough to ac-
comodate all of the gesture-generated sidelobes without at-
tenuation. In practice we have found that biquadratic band-
passes of the kind intended to be used for audio are adequate
for the job, although it’s likely that custom designed filters
could yield more efficient results.

AM demodulation techniques that can be used when the
original carrier is available are called synchronous. Synchronous
demodulation has better signal-to-noise characteristics than
asynchronous demodulation (Haykin 1994). Since in our audio-
input interface system the carrier is generated in software, we
can demodulate synchronously. A standard synchronous de-
modulation technique is to multiply the amplitude-modulate
signal by the original carrier wave. If the carrier is operating
at a frequency ω and the amplitude envelope of the modu-
lated carrier is A(t), the amplitude modulated carrier would

Figure 5: Illustration of downsampling technique. The car-
rier frequencies are set so that an integer number of periods
fit exactly within the downsampled sample rate. In this case
exactly five periods of the sine wave fit within thirty-two sam-
ples at the main sampling rate. The dots indicate the points
that the sine wave is sampled at the main sampling rate, and
the larger circles indicate the points at which the downsam-
pling mechanism chooses a sample.

be A(t) cos(ωt). The multiplication of this function with our
own carrier for synchronous demodulation can then be ex-
pressed as

A(t) cos(ωt) cos(ωt + φ) =
A(t)

2
(cos(2ωt + φ) + cos(φ))

(1)
Note that we have added a phase shift of φ in the multiply-

ing carrier since in general the two carriers won’t be perfectly
in phase. The envelope A(t) that we want to extract is now
modulating a sine wave at twice the frequency of the origi-
nal carrier, but it also is sitting in the baseband. By high-pass
filtering out the doubled carrier frequency component of the
signal we are left simply with A(t) cos(φ)/2.

Figure 5 illustrates a more computationally efficient method
of moving the amplitude envelope into the baseband that could
be called synchronous downsampling. In this scheme a naive
downsampling of the signal is performed at a rate that exactly
matches an integer number of periods of the carrier signal.
The carrier frequency is shifted to zero, and what was previ-
ously a bandpass filter becomes a lowpass filter. When oper-
ating at a sample rate of ωr and downsampling by a factor of
n, the carrier frequencies must be k(ωr/n) where integer k
satisfies 0 < k < (n/2) − 1. So for example at a sampling
rate of 64kHz and downsampling by a factor of 32, we can
use carrier of 2k kHz, where 1 <= k <= 15. In Figure 5,
k = 5. Carriers of 30kHz and 26kHz (k = 15 and 13) have
worked well for us.



In both demodulation methods, the amplitude of the de-
modulated information is dependent on the phase of the input
carrier wave. Since we are generating these driving frequen-
cies it’s important to tune their phase to maximize the signal-
to-noise ratio of our instrument. In a noiseless environment
the bit depth of our audio interface, the signal strength trans-
mitted by the sticks, and the gain of the antenna are the factors
that limit the signal-to-noise ratio.

3 Gesture Data Analysis
The remainder of this paper discusses strategies to deal

with the inevitable noise picked up by the antenna. That is,
we can model the jth sample of an input signal x as

xj = sj + nj (2)

where sj is the true value of the sampled signal and nj

represents the corrupting noise. In the modern world there
are many sources of electromagnetic interference that our an-
tenna will pick up; we have found a realtime spectral analysis
of the input signal to be a very valuable tool to aid in iden-
tifying noise from surprising sources such as light fixtures,
televisions, and refridgerators. If the noise cannot be stopped
at the source, the corruption can be minimized by setting the
carrier frequencies so that the overlap between the gesture
sidelobes and the noise is minimized.

When the sources of noise are small and many, we can
thank the Central Limit Theorem for allowing us to make the
reasonable generalization of treating the background noise as
white - that is, having constant power per unit of spectral
bandwidth over the spectral range of interest ??. This sim-
plifies our analysis considerably when we consider our two
main analysis problems: first, how to use the s + n data we
collect to optimize our determination of the true value s, and
second, how to determine when an event has taken place. In
Electrical Engineering textbooks these are called the prob-
lems of estimation and detection.

3.1 Parameter Estimation
Consider a locally stationary signal - that is, one whose

true value we expect to be unchanging over a certain period
of time. Given only a single sample of data x0 from this sig-
nal, no separation of the true value and the noise is possible.
Accordingly the best estimate of the true value of the signal
is simply x0 under the assumption of zero-mean white noise.
When multiple samples x0, x1, x2, ... are taken into consider-
ation we can exploit signal processing techniques to provide
a more accurate estimation of the true value of the signal s.
The most straightforward way to reduce the effect of zero-
mean white noise in a stationary signal is to take the mean of

m successive samples. If the variance of our gaussian noise is
σ2

n, the variance of the estimate will be σ2

n/m (Schwarz and
Shaw 1975).

Typically the signals we’ll be estimating will not be sta-
tionary. If our sampling rate is high compared to the band-
width of the gesture data, it is not unreasonable to assume
locally linear signal movement for a small number of sam-
ples. Therefore we can still take a mean of m samples, but
we’ll be estimating the value of the signal in the middle of
those m samples. In other words, the averaging of a signal
over time introduces latency of (m − 1)/2 samples into the
calculation of the estimate.

This intuitive argument can be backed up with filter theory
- averaging m samples after all is just a crude FIR lowpass fil-
ter, and if the sampling rate is very high our gesture data will
be relatively low in the spectrum. It is generally preferable
to use one of the many design techniques to design a more
optimal IIR or FIR filter with a response curve that is flatter
through the important baseband and then drops off quickly to
attenuate the higher frequencies.

More complicated estimation algorithms that account for
non-stationary signals include the Kalman filter (Robert Grover Brown
1992), a recursive estimator that can take into account multi-
dimensional correlation and provides the smallest linear mean-
squared error, and non-linear algorithms which are more ef-
fective for non-gaussian noise sources but require informa-
tion about the statistical distribution of the noise and the sig-
nal (Schwarz and Shaw 1975). In all of these schemes a filter
that increases the signal-to-noise ratio comes at a cost of in-
creased latency in the estimation.

For the Boie drum the parameters of interest are the x, y
and z positions of each stick. The geometry of the four seg-
ments of the antenna is such that the signal strength for each
is associated with one of the surface’s four edges. The z po-
sition of a stick is estimated simply by summing all four of
its signals. The x and y positions are estimated by calculating
the ratio of the signal strengths of the two edges perpendicu-
lar to the dimension in interest. The resulting parameters are
very close to linear near the center of the drum pad, but be-
come non-linear near the edges. More importantly for event-
detection purposes, our parameters are monotonic.

3.2 Events in Signals
The method by which events are represented in the signal

world can be confusing for those of us used to dealing with
message-based events in a computer music programming en-
vironment like Max. Consider an event signal whose value
represented the status of an event: a value of 1 indicates the
event has occurred at that sample time, and a value of 0 means
it has not. At audio sampling rates, most event signals would



Figure 6: Max patch featuring an example of an event cap-
turing MSP network. The phasor object generates a signal
that ramps from 0 to 1. When it crosses 0.5 the output of the
¡ object changes from 1 to 0, which causes the change ob-
ject to output a -1. The -1 causes the == object to output a
1, which triggers a sampling of the six input signals by the
event object. The next time the high-priority scheduler thread
is serviced the event object outputs the values of the sampled
parameters as a single list.

be made up mostly of zeroes with the occasional one. Ac-
cordingly, it is inefficient to process for each and every sam-
ple the calculations that might happen as a result of an event
occurring.

In the Max/MSP environment the solution is to move into
the message-passing domain. The edge˜ object sends bangs
out of its first and second outlets in response to zero to non-
zero and non-zero to zero transitions in the input signal, re-
spectively. But beyond simply knowing that an event has hap-
pened, we needed the ability to synchronously sample values
from multiple parameters at the time of an event, as well as
queue multiple events in a single audio processing vector to
be output into Max’s high-priority scheduler thread. So the
event˜ object was created; Figure 6 shows an example of
how this object can be used to move between the signal and
message domains. Also noteworthy in this example is the
change˜ object, which is frequently useful when an event
is to be detected based on a change in the value of a signal.

Max’s high-priority scheduler thread can operate in sev-
eral modes (Jones and Nevile 2005). In overdrive mode with
the scheduler in audio interrupt enabled the queued events
will be output and processed before the next signal vector
is calculated. Therefore there is a latency introduced in this
process whose delay in samples can be modeled as a random
variable with uniform probability distributed over the range

Figure 7: Max patch featuring an MSP network that executes
a naive test and uses Jitter to graph the results. Noise is added
to a sine wave to imitate a noisy signal. This signal is tested
to see if it’s greater than zero. True and false results are indi-
cated by the background grey bar graph.

from zero to the number of samples in the signal vector size.
Operating at a signal vector size of 16 with a sampling rate of
64kHz The maximum latency introduced here is one quarter
of a millisecond.

3.3 Tests and Statistics
Given one or more streams of signal data, we have to

create tests to help us determine when an event has taken
place. The corruption of the signals with noise requires that
we closely evaluate the performance of all testing algorithms.

Consider Figure 7, which shows a Max patch that features
an MSP network that executes a simple test and uses Jitter to
graph the results. Noise is added to a sine wave to imitate a
noisy signal, and the signal is tested to see if it’s greater than
zero. True and false results are indicated by the background
grey bar graph. As it approaches the zero threshold, the noise
around the signal rapidly moves the combined value above
and below the zero threshold, causing the result of the test to
flip-flop many times. To make decisions in the presence of
noise obviously will require methods more sophisticated than
this naive approach.

As illustrated in Figure 8, the thresh˜ object allows
us to set a hysterisis range that can eliminate the rapid flip-
flopping. If the input signal moves from below to above the
object’s upper limit parameter, the output signal is set to 1. If
the input signal drops from above to below the object’s lower



Figure 8: The same network as in figure 7 but with a thresh
object instead of a naive > object.

limit parameter, the output signal is set to 0.
Another standard building block of analog logic is the en-

velope follower, which tracks changes in a signal’s direction
of motion and reports the extremities reached. Figure 9 shows
how one might naively implement an envelope follower with
MSP objects. The system fails because the noise in the signal
causes the difference between successive samples to alternate
quickly between negative and positive values. To attack this
problem we created the fuzzyenv˜ object, which can be
seen in Figure 10. fuzzyenv˜ takes a distance parameter
that is the amount the signal must reverse from its extreme
value before a change in direction is reported.

Note that in both of these examples the noise could be
quantified precisely - ie, there would never be more than 0.05
added to or subtracted from the signal. In the real world sig-
nals are random variables that if we’re lucky can be char-
acterized as gaussian variables with a known variance. We
therefore cannot create tests that are guaranteed to give us the
right result, but we can tune the parameters of the tests to dis-
tribute the risk in a way we find acceptable. In any statistical
test there are two types of failures: a false alarm is when the
test indicates that an event has occurred when in fact it has
not, and a miss is when a test does not detect an event that has
in fact occurred. It is unfortunately impossible to simulta-
neously optimize our tests to minimize both of these possible
failures. There is a subtle balance that must be struck between
the probability of correct detection, the false alarm rate, and
the miss rate. Furthermore, latency (or detection time) is an-
other factor in this tradeoff, since better estimation techniques

Figure 9: Max patch featuring an MSP network that imple-
ments a naive envelope follower and uses Jitter to graph the
results. Noise is added to a sine wave to imitate a noisy sig-
nal. The envelope of the signal is tracked using two change
objects in series followed by a sah to sample-and-hold the
envelope extremeties.

Figure 10: The same network as in figure 9 but with a
fuzzyenv object instead of a naive envelope follower.



that reduce the uncertainty in the signal values take longer to
perform.

If the noise in a signal is gaussian and we know the vari-
ance, it is straightforward to evaluate the probability of the
various errors in a particular scenario using standard statisti-
cal tables or an approximation formula for the area under the
standard normal curve (Wald 1947). It is difficult, however,
to get a broad idea of how often a test will fail, since one can
only calculate the probability of failure in a very particular
situation. In theory one can calculate not only the probability
of failure, but the average time between failures and even the
distribution of the time interval between failures.

When the conditions that define the occurence of an event
have been identified we can tailor a test procedure to our sta-
tistical comfort levels. In situations where there is more than
one condition that defines the event, it’s important to keep in
mind that the different estimation and testing algorithms can
introduce different latencies into the signals. When features
are to be identified in parallel, care must be taken to ensure
that the respective latencies inherent in the processing are of
equal length.

3.4 Audio-Input Drum Events
The algorithm developed to detect when the surface of

the drum has been hit with one of the sticks has three con-
ditions, one for each of the position, velocity, and accelera-
tion of the signal. Each test requires information about the
signal, so an automated calibration procedure has been de-
veloped. The Java code employed records a few seconds of
data with the sticks placed on the surface of the drum, and
then a few more seconds with a performer hitting the drum
forcefully and moving the sticks through their entire range of
motion. The code then analyzes the recorded signals to dis-
tribute scaling factors that normalize the four incoming sig-
nals. The ranges of the estimated x, y and z positions of the
sticks are also normalized based on the data collected, as is
the velocity for detected hits. The variance of each estimated
parameter is also measured to be used to set thresholds in the
tests discussed below.

The position test ensures that the stick is positioned very
close to the surface that is being hit. Since our problem re-
duces to motion in the z dimension, our test simply ensures
that our z estimate is below a threshold. The value of this
threshold is the mean z value calculated during the calibration
procedure plus a factor of the calculated standard deviation in
the z position estimate.

The velocity test ensures that the stick is moving down-
wards towards the surface at the time of the hit. The z-velocity
of the signal is estimated as the difference between successive
z-position estimates. In other words,

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

x 104

−10

−8

−6

−4

−2

0

2

4

6

8
x 10−7

trigger

minimum

Samples

S
ig

na
l A

m
pl

itu
de

Position
Velocity

threshold 

Figure 11: Position and Velocity Signals of a Radio Drum Hit

vj = zj − zj−1 (3)
= (sj + nj)− (sj−1 + nj−1) (4)
= (sj − sj−1) + (nj − nj−1) (5)

Unfortunately although it looks like the noise components
of the signal subtract from one another, in fact the variance of
this estimate of the velocity is twice the variance of the z-
position estimate (Schwarz and Shaw 1975). Our test simply
compares the estimated velocity with a threshold whose value
is set as a factor of the standard deviation of the estimated
velocity signal calculated during the calibration procedure.

The acceleration test ensures that the downward velocity
has reached a minimum value and is experiencing a restoring
force upwards. This is implemented with a fuzzyenv˜ ob-
ject on the velocity estimate - note that the total change in ve-
locity is simply the integration of the acceleration! The vari-
ance in the difference between two velocity estimates spaced
m samples apart is twice the variance of the velocity estimate
and four times the variance of the z position estimate. The
reversal threshold of the fuzzyenv˜ object is set as a factor
of two times the standard deviation of the velocity estimate
calculated during the calibration procedure.

Figure 11 shows a plot of the position signal correspond-
ing to a drum hit and its velocity estimate on the same graph.
One thing to note is that the minimum of the velocity happens
before that of the z position estimate; the difference between
this point and the minimum of the z-position signal is approx-
imately 7 milliseconds. Figure 12 shows a simplified version
of the MSP network used to implement the hit detection al-
gorithm. The event˜ object captures three parameters in
association with every hit: the velocity, which is sent as the



Figure 12: Simplified version of the MSP network that im-
plements the hit detection algorithm.

minimum extrema from the fuzzyenv˜ object, and the es-
timated x and y location of the hit. Figure 13 shows a plot of
a recorded signal of a drum roll and the hits detected by the
algorithm.

4 Conclusions
We have developed a new gesture capture system that re-

quires less hardware, is highly resolved both temporally and
quantitatively, and boasts extremely low latency. On a mod-
ern laptop computer the processing required to demodulate
the signals and detect hit events is less than five percent of the
signal processing power available. The latency between a hit
and the resulting sound synthesis is dependent on the round-
trip latency of the sound device and operating system - in our
case this is a little less than six milliseconds. In a typical en-
vironment the signal-to-noise ratio of the position signals is
more than 85dB; the signal-to-noise ratio of the velocity pa-
rameter of a hit is more than 70dB. Most important, the sys-
tem is solid and reliable and has been used in several concerts
by different musicians across North America this year.

There is much to do in the future to make this interface
even better. Different frequency transmitting systems and es-
timation algorithms may improve the signal to noise ratio.
Linearizing the cartesian parameters of the drum will allow a

0 1 2 3 4 5 6 7 8

x 104

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4
x 10−3

Samples

Fi
lte

re
d 

S
ig

na
l

Figure 13: Filtered Signal With Detected Hits

more intuitive programming interaction when setting up map-
pings. Different antenna geometry may improve the three-
dimensional tracking and signal-to-noise ratio of the instru-
ment. Finally, we are excited about the possibility of interact-
ing with physical models with a controller capable of trans-
mitting high-resolution physical details.

References
Allison, J. T. and T. A. Place (2004). Teabox: A sensor data in-

terface system. Proceedings of the 2004 International Com-
puter Music Conference.

Boie, R., L. W. Ruedisueli, and E. R. Wagner. Gesture sensing
via capacitive moments. internal memo at AT&T Bell Labs.

Haykin, S. (1994). Communication Systems, 3rd ed. United
States: John Wiley and Sons, Inc.

Jones, R. and B. Nevile (2005). Creating visual music in jitter:
Approaches and techniques.

Nakra, T. M. (2000). Searching for meaning in gestural data.
Trends in Gestural Control of Music.

Rimas Avizienis, Adrian Freed, T. S. . D. W. (2000). Scalable
connectivity processor for computer music performance sys-
tems.

Robert Grover Brown, P. Y. H. (1992). Introduction to Random
Signals and Applied Kalman Filtering. New York: John Wi-
ley & Sons, Inc.

Schwarz, M. and L. Shaw (1975). Signal Processing: Dis-
crete Spectral Analysis, Detection and Estimation. Dubuque,
Iowa: McGraw Hill.

Wald, A. (1947). Sequential Analysis. New York: John Wiley &
Sons, Inc.

Wessel, D. and M. Wright (2002). Problems and prospects for in-
timate musical control of computers. Computer Music Jour-
nal.



Zicarelli, D. (1991). Communicating with meaningless numbers.
Computer Music Journal 15(4), 74–77.


