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ABSTRACT 

This dissertation describes how state of the art computer music technology can be used to 

digitize, analyze, preserve and extend North Indian classical music performance. Custom 

built controllers, influenced by the Human Computer Interaction (HCI) community, serve 

as new interfaces to gather musical gestures from a performing artist. Designs on how to 

modify a Tabla, Dholak, and Sitar with sensors and electronics are described. 

Experiments using wearable sensors to capture ancillary gestures of a human performer 

are also included. A twelve-armed solenoid-based robotic drummer was built to perform 

on a variety of traditional percussion instruments from around India. The dissertation also 

describes experimentation on interfacing a human sitar performer with the robotic 

drummer. Experiments include automatic tempo tracking and accompaniment methods. 

A framework is described for digitally transcribing performances of masters using 

custom designed hardware and software to aid in preservation. This work draws on 

knowledge from many disciplines including: music, computer science, electrical 

engineering, mechanical engineering and psychology. The goal is to set a paradigm on 

how to use technology to aid in the preservation of traditional art and culture.  
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Chapter 

1 
1  

Introduction 
Motivation & Overview 

 

hen the world is at peace, when all things are tranquil and all men 

obey their superiors in all their courses, then music can be perfected. 

When desires and passions do not turn into wrongful paths, music 

can be perfected. Perfect music has its cause. It arises from equilibrium. 

Equilibrium arises from righteousness, and righteousness arises from the 

meaning of the cosmos. Therefore one can speak about music only with a man 

who has perceived the meaning of the cosmos.” [71] 

 W

The idea of interdisciplinary study is a new theme re-emerging in 

academic research. It is a break from the norm of the past 200 years, where 

traditional scholars become experts in one area of study and know every 

microscopic detail about it. Interdisciplinary study involves a macroscopic view, 

allowing one to merge together a variety of fields in order to help “perceive the 

meaning of the cosmos,” and push academic research in new directions with the 

perspective of a scientist, philosopher and artist. The focus of this dissertation is 

to draw a deeper understanding of the complexity of music, drawing knowledge 
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from different disciplines including computer science, electrical engineering, 

mechanical engineering, and psychology.    

The goal of this dissertation is to describe how North Indian classical 

music can be preserved and extended by building custom technology. The 

technology that is produced from this work serves as an infrastructure and set of 

tools for people to learn and teach Indian classical music and to better 

comprehend what it takes to perform “perfect music”. The technology will also 

serve as a means to push the traditional performance technique to new extremes 

helping forge multimedia art forms of the future.    

1.1 Motivation 

Historically, the majority of music traditions were preserved by oral transmission 

of rhythms and melodies from generation to generation. Indian culture in 

particular is well known for its musical oral traditions that are still prevalent today. 

In the Western Hemisphere, methods for transcribing music into written notation 

were introduced allowing more people to learn from the masters, not limiting it to 

those who had the ability to sit with them face to face. Then in the 1900’s the age 

of audio recordings dawned using phonograms and vinyl, analog tapes, digital 

compact disks, and multi-channel tracking systems, with each step improving the 

quality and the accuracy of the frequency range of the recordings. The invention 

of visual recording where musical performances could be viewed on film, VHS, 

DVDs, or online QuickTime and You Tube clips, has given musicians a closer 

look at the masters’ performances in order to aid emulation. However, both audio 

and visual records turn performed music into an artifact, ignoring what is truly 

important to learn and preserve tradition: the process of making music.  

The work in this dissertation describes techniques and custom technology 

to further capture the process of becoming a performing artist. A key motivation 

for this work came in 2004, when Ustad Vilayat Khan, one of India’s great 
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masters of sitar, passed away. He took with him a plethora of information on 

performance technique that is not preserved in the many legendary audio 

recordings he left behind.  

The tools built and which will be described in detail in this dissertation 

can serve as pedagogical tools to help make Indian music theory more accessible 

to a wider audience. This work stands on the shoulders of those who have been in 

the computer music and audio technology field and have designed a number of 

different algorithms and techniques to extend 21st Century music. A majority of 

these researchers have based ideas upon Western music, whereas this work will 

bring music from India to the forefront to help test, modify and build upon 

traditional techniques.  

1.2 Overview 

Research on the process of a machine obtaining gestural data from a human and 

using it to form an intelligent response is essential in developing advanced human 

computer interaction systems of the future. Conducting these types of experiments 

in the realm of music is obviously challenging, but is particularly useful as music 

is a language with traditional rules that must be obeyed to constrain the machine’s 

response. By using such constraints successful algorithms can be evaluated more 

easily by scientists and engineers. More importantly, it is possible to extend the 

number crunching into a cultural exhibition, building a system that contains a 

novel form of artistic expression that can be used on the stage.  

One goal of this research, besides preserving traditional techniques, is to 

make progress towards a system for a musical robot to perform on stage, reacting, 

and improvising with a human musician in real-time. There are three main areas 

of research that need to be integrated to accomplish this goal: Musical Gesture 

Extraction, Robotic Design, and Machine Musicianship. A concluding section 
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will discuss integration of the research and how it is used live for performance on 

stage.  

 

1.2.1 Related Work 

Part I of this dissertation provides an overview of related work in order to inform 

the reader of what has been previously done and how it has influenced this work. 

Chapter 2 presents a history of musical gesture capturing systems, setting a 

foundation for what has been done in the past, and giving the reader a sense of the 

high shoulders that this work stands upon. Chapter 3 presents an in depth history 

of musical robotics, describing the work of masters in the field who have paved 

the way in the past century. Chapter 4 presents a history of machine musicianship 

algorithms, techniques and experiments. 

 

1.2.2 Musical Gesture Extraction 

Part II of this dissertation describes research on machine perception. This is 

accomplished by experimenting with different methods of sensor systems for 

capturing gestures of a performer. In a musical context, the machine can perceive 

human communication in three general categories. The first is directly through a 

microphone, amplifying the audio signal of the human’s musical instrument. This 

serves as the machine’s ears. The second is through sensors on the human’s 

musical instrument. This is an extra sense that does not generally arise in human-

to-human musical interaction. The third is through sensors placed on the human’s 

body, deducing gestural movements during performance using camera arrays or 

other systems for sensing. These are analogous to the machine’s eyes.  

Chapter 5 to 7 describes systems for obtaining data via sensors placed on 

the traditional instruments. Chapter 5 discusses the first interface known as the 

Electronic Tabla (ETabla), which will lay the initial framework for interface 



 
5

design based on a traditional instrument. Chapter 6 will describe the next drum 

interface, the Electronic Dholak (EDholak), a multiplayer Indian drum that 

explores the possibilities of network performance using the internet. Chapter 7 

describes the Electronic Sitar (ESitar), a digitized version of Saraswati’s (Hindu 

Goddess of Music) 19 stringed, gourd shelled instrument. Chapter 8 will discuss 

wearable sensors, including methods and experiments for capturing data from the 

human’s body during musical performance.  

 

1.2.3 Robotic Design 

Part III of this dissertation describes musical robotics. This section involves 

developing a system for the computer to actuate a machine-based physical 

response. This machine must have the ability to make precise timing movements 

in order to stay in tempo with the human performer. A robotic instrument serves 

as a visual element for the audience, helping to convince them of the functionality 

of the interaction algorithms that would be lost by synthesizing through 

loudspeakers. 

The acoustics of the robotic instrument is an interesting research topic, 

helping to determine what material to create the robot with and with what 

dimensions. Initial design schemes are to make robotic versions of traditional 

Indian instruments. Basing the machine on traditional form produces similar 

challenges to the school of robotics that tries to model the mechanics of the 

human body in the machine. However, in both cases, the robot should acquire 

skills which a human could not imagine performing. Chapter 9 describes work on 

designing The MahaDeviBot, a robotic system designed to perform Indian 

musical instruments.  
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1.2.4 Machine Musicianship 

Part IV describes the final stage of this dissertation, which involves how a 

machine can deduce meaningful information from all of its sensor data to generate 

an appropriate response. The first challenge is to deal with the large volume of 

unstructured data. A feature extraction phase is implemented to reduce the data to 

a manageable and meaningful set of numbers. Feature selection criteria must be 

set and prioritized. In a musical context, the machine needs to have a perception 

of rhythm, which notes are being performed by the human and in what order and 

time durations, and even emotional content of the performer. Then the machine 

needs to be able to respond in real-time, and generate meaningful lines. 

Experiments for this part of the dissertation focus on sitar performance and 

interaction with the MahaDeviBot.  

Chapter 10 describes experiments on automatically tracking tempo from a 

sitar performer. Chapter 11 describes experiments on robotic rhythm 

accompaniment software based on a real-time retrieval paradigm. Chapter 12 

describes custom built software for automatic transcription of sitar performance. 

Chapter 13 describes methods for using machine learning to generate audio-based 

“virtual sensors” to extend our process to a larger community. Chapter 14 

describes affective computing experiments, using wearable sensors for machine-

based human emotion recognition.   

 

1.2.5 Integration 

Part V describes how all the research on stage has been integrated to achieve our 

final goal of preserving and extending North Indian performance. Chapter 15 is a 

chronological journal describing how technology invented is used in live 

performance. Chapter 16 discusses conclusions made from the dissertation and 

research with a detailed outline of key contributions made from this body of work. 
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Because of the interdisciplinary nature of this work, several Appendicies are 

included in this document to help give background knowledge to the reader about 

important musical and engineering theory needed to fully understand the details 

of this project. Appendix A presents an introduction to North Indian classical 

music theory. Appendix B provides a background on physical computing that 

includes sensor and microcontroller technology. Appendix C presents a 

background on machine learning. Appendix D presents a background on feature 

extraction methods. Appendix E introduces the computer music languages used 

for this research. Appendix F is a list of publications that came out of this body of 

work.   

1.3 Key Contributions 

This section briefly outlines the key contributions of this dissertation. Specific 

details are included throughout the dissertation.   

 

Musical Gesture Extraction: 

• The ETabla is the first hardware device to capture finger position and 

timing information from a traditional tabla performer, for use in modern 

multimedia concerts. 

• The EDholak is the first multiplayer Indian drum performance system that 

took part in the first Indian Music-based networked performance. 

• The ESitar is the first modified Indian classical string instrument to have 

sensors that capture performance gestures for archival of performance 

technique and for use in modern multimedia concerts. 

• Research using the VICON motion capture system, the KiOm and the 

WISP is the first work of using wearable sensors on the human performer 

to learn and preserve more intricacies about North Indian Classical music. 
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Musical Robotics: 

• The MahaDeviBot is the first mechanically driven drum machine to 

perform Indian Classical Rhythms for human-to-robot performances in 

conjunction with multimodal machine based perception. 

• The MahaDeviBot also served as means for detailed comparison and 

evaluation of the use of solenoids in a variety of techniques for striking 

percussion instruments for musical performance.  

 

Machine Musicianship: 

• This research presents the first system for multimodal acquisition from a 

sitar performer to obtain tempo-tracking information using a Kalman 

Filter. 

• This research presents the first system to use retrieval techniques for 

generating robotic drumming accompaniment in real-time.  

• This research presents the first software to automatically transcribe a 

performance of a sitar performer using multimodal acquisition methods. 

• This research presents the first method to create an audio-based “virtual 

sensor” for a sitar using machine learning techniques.  

• This research presents the first experiments on using motion capture data 

for machine-based emotion detection. 
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Chapter 

2 
2          

A  History of Musical 
Gesture Extraction 

Interfaces for Musical Expression 

 

esture is defined as a “form of non-verbal communication made with 

a part of the body, to express a variety of feelings and thoughts”1. 

This section presents research in techniques to extract musical 

gestures from a performing artist. Information is generally collected using sensor 

technology (See Appendix B for more information) that is affixed to musical 

instruments or even the human body.   

G
A digital controller is a device that utilizes a variety of different sensors 

that measure human interaction and converts the collected information into the 

digital realm. For example, a mouse is a controller that uses an optical sensor 

system to convert hand movement into x and y coordinates on a computer screen. 

The goal of the work presented in this chapter is to invent musical controllers that 

can help a performer express rhythm, melody, harmony, intention and emotion.  

This chapter presents a history of musical gesture extraction, describing systems 

built by various engineers, musicians and artists. “Musical interfaces that we 
                                                 

1 Available at www.wikipedia.org (October 2006)  
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construct are influenced greatly by the type of music we like, the music we set out 

to make, the instruments we already know how to play, and the artists we choose 

to work with, as well as the available sensors, computers, and networks” [30]. 

Thus, this chapter presents newly made instruments that leverage traditional 

playing techniques. This background chapter sets the context of this work and is 

split into five sections: keyboard controllers, drum controllers, string controllers, 

wind controllers, and body controllers. The interfaces described are representative 

of the research in each area and are not an exhaustive list.   

2.1 Keyboard Controllers  

Electronic piano keyboards are the most well established electronic instruments 

and have had wide commercial success. Many homes across the world have Casio, 

Yamaha, Korg, or Roland keyboards with onboard MIDI sound banks for amateur 

and professional performance. Early interfaces included flashing lights, multiple 

buttons, and automatic accompaniment in many styles to help beginners play 

pieces. The latest upgrades to this technology are utilizing USB or firewire 

interfaces that enable modern players to connect their controllers to their laptops. 

That way any commercial music synthesis software can be used for maximum 

flexibility in sound production. 

Most of these commercial interfaces do not have the full-size weighted 

keys that are necessary to approximate true traditional piano performance. They 

also do not have the ability to reproduce the sound of the “real” acoustic grand 

piano. This influenced innovators to create systems that can capture gesture data 

from a real piano. In the 1980’s, Trimpin designed a system to captured which 

fingers were pressing which key on a grand piano. Currently one of the most 

robust systems to capture this information is commercially available. It is the 

Piano Bar2, designed by Don Buchla in 2002 and now sold by Moog Music. It 

                                                 
2 Available at: http://www.moogmusic.com/detail.php?main_product_id=71 (November 2006) 
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captures the full range of expressive piano performance by using a scanner bar 

that lies above any 88-key piano, gathering note velocity as well as a pedal sensor 

which gathers a performer’s foot movement.   

The SqueezeVox [34] is a controller based around an accordion that 

attempts to control breathing, pitch and articulation of human voice synthesis 

models. Pitch is controlled by the right hand using piano keys, vibrato, after touch 

and a linear pitch bend strip, while the left hand controls breathing using the 

bellows.  Consonants and vowels are also controlled by the left hand via buttons 

or continuous controls. The Accordiatron [66] is a controller which also models a 

squeeze box paradigm, sensing both distance between two end panels and rotation 

of each of the hands.  

Researchers at Osaka University in Japan designed a system for real-time 

fingering detection using a camera-based image detection technique, by coloring 

the finger nails of the performer [168].  

2.2 Drum Controllers 

Electronic percussion instruments are also commercially available in many sizes, 

shapes and forms. However, commercial interfaces are generally crude devices 

that capture the velocity of the striking implement and the moment of impact. 

Research laboratories have dissected the problem even further in order to try and 

capture the myriad of data needed to accurately describe a percussive gesture, 

including: angle of incidence of the strike, polar position of strike on the surface, 

and number of points of contact (when using multiple fingers). One of the main 

challenges is capturing both quick response times as well as more “intelligent” 

data about expressive information. This section describes the variety of 

techniques explored to solve this problem.  

The Radio Drum [107] or Baton is one of the oldest digital music 

controllers. Built by Bob Boie at Bell Labs and improved by Max Mathews (the 
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father of computer music), the interface uses radio tracking techniques depending 

on electrical capacitance between two mallets and an array of receiving antennae 

mounted on a surface. The drum triangulates three separate analog signals that 

represent the x, y, z coordinates of each stick at any point in time.  

 

   
Figure 1 - Radio Baton/Drum used by Max Mathews, Andrew Schloss, and Richard Boulanger. 

 

There have also been a number of methods that modify and augment sticks to 

gather detailed information about the performer’s gestures. The Vodhran [105] 

uses electromagnetic sensors inside a stick to track six dimensions of position to 

drive a physical model of a drum. Diana Young built the AoBachi interface which 

uses accelerometers and gyroscopes mounted inside a set of Japanese bachi sticks 

to send acceleration and angular velocity data via Bluetooth, so a performer does 

not have any wires impeding performance [206]. The Buchla Lightening3 uses 

infrared light tracking to track the position of wireless sticks in two dimensions. 

D’CucKOO [12] is a very successful project combining MIDI marimbas, MIDI 

drum controllers and six-foot MIDI bamboo “trigger sticks”, each based on piezo-

electric technology. This evolved into the Jam-O-Drum, which uses an array of 

commercial based drum pads mounted into a surface to provide a collaborative 

                                                 
3 Availabe at http://www.buchla.com/lightning (October 2006) 
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installation for novice performers  [14]. The Rhythm Tree [124], one of the 

largest percussion interfaces in the world, uses 300 sensors to detect direct or 

indirect strikes, with LED enhanced piezo pads which light up with visual 

feedback for the users. Sofia Dahl’s Selspot system [41] uses video and motion 

capture to analyze gestures of percussionists.  

  
Figure 2 - D'CuCKOO 6 piece drum interfaces on stage (left). BeatBugs being performed in Toy 

Symphony in Glasgow, UK (right). 

 

The BeatBugs [1, 194] are durable drum interfaces that can be networked together 

to control many rhythmic based compositions. These toy-like instruments have 

been used in symphonies involving children introducing them to music 

performance and technology. The PhISEM Shaker Percussion [27] controllers 

used accelerometers to map gestures to shaker physical models as well as control 

parameters to algorithmic interactive music involving pre-recorded bass, drums 

and piano. 

Currently there are a number of commercially available products that 

allow anyone to take advantage of the power of electronic drums. Roland has 

successfully launched their electronic drum set line know as the V-Drums4, as 

well as the HandSonic (HPD-15)5 which uses force sensing resistors to create a 

hand drum interface. The DrumKat6 is another powerful drum interface which 

uses force sensing technology. The Korg Wavedrum uses three contact 
                                                 

4 Available at http://www.roland.com/V-Drums/ (October 2006) 
5 Available at http://www.roland.com/products/en/HPD-15/ (October 2006) 
6 Available at http://www.alternatemode.com/ (October 2006) 
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microphones underneath a drumhead in conjunction with synthesis algorithms to 

give a unique electronic drum sound to every strike. The Buchla Thunder7 uses 

more than a dozen pads that sense both pressure and position, while the Marimba 

Lumina 8  brings mallet percussion to a new level with advanced control 

parameters including position along the length of bars, dampening, and note 

density. The Tactex Multi-Touch-Controller (MTC)9 uses a grid of seventy two 

fiber optic sensing pads to distinguish multiple sources of pressure. The STC-

100010 by the Mercurial Innovations Group is a newer, less expensive device that 

captures pressure from one source.   

2.3 String Controllers 

Tod Machover and the Hyperinstrument Group at MIT Media Lab have created a 

multitude of interfaces that combine the acoustic sound of the instrument with 

real-time synthesis controlled by sensors embedded in the interface, dubbed 

hyperinstruments. Their work is one of the few examples of serious study of 

combining synthesis and the acoustic sound of instruments that has been 

performed in public, most notably the hypercello performance by Yo-Yo Ma 

[103]. 

  
Figure 3 - Hypercello (Machover), SBass (Bahn), and Rbow (Trueman). 

 

                                                 
7 Available at http://www.buchla.com/historical/thunder (October 2006) 
8 Available at http://www.buchla.com/mlumina (October 2006) 
9 Availabe at http://www.tactex.com/ (October 2006) 
10 Available at http://www.thinkmig.com/ (October 2006) 
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Dan Trueman designed the Rbow which is a violin bow with position and 

pressure sensors [176]. This evolved into the bowed-sensor-speaker-array 

(BOSSA) which models the violin’s performance technique as well its spatial 

directivity pattern with a 12-channel speaker array [37]. This influenced Charles 

Nichols who designed the vBow, the first violin interface with haptic feedback 

using servo motors to simulate friction, vibration and elasticity of traditional 

performance [119]. Diana Young at the MIT Media Lab designed the hyperbow 

[205] that measures articulation, changes in position, acceleration, and changes in 

downward and lateral movements using electromagnetic field measurement 

techniques, accelerometers, and foil strain gauges. Dan Overholt at University of 

California Santa Barbara invented the Overtone Violin[121], which incorporated 

an optical pickup, 18 buttons, 3 rotary poteniometers, a joystick, an accelerometer, 

2 sonar detectors, and a video camera, extending traditional violin performance.   

The Sensor Bass (SBass) adds a series of slide sensors, force sensing 

resistors, potentiometers, buttons, an array of pickups, a mouse touch pad, and an 

biaxial accelerometer to a five string upright electric bass [9]. The Nukelele 

designed at Interval Research used two linear force sensing resistors to gather 

pluck and strike parameters to directly drive a plucked string physical model [30].  

2.4 Wind Controllers 

There are, surprisingly, a number of commercially available wind controllers.  

Akai have several types of wind controllers called EWIs11. The Yahama WX512 is 

modeled after the saxophone fingering system with sensors for obtaining breath 

and lip pressure. The Morrison Digital Trumpet13 is an Australian made controller 

for trumpet performance. All these devices are acoustically quiet instruments that 

                                                 
11 Available at: http://www.akaipro.com/prodEWI4000s.php (June 2007)  
12 Available at: http://www.yamaha.com/ (June 2007) 
13 Available at: http://www.digitaltrumpet.com.au/ (June 2007) 
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need a computer or synthesizer to make sound. They are also relatively expensive. 

A professional wind player might be hesitant to buy such an expensive gear.  

The academic approach has been to modify traditional wind instruments with 

sensor technology, converting them to hyperinstruments. In the 1980’s Trimpin 

built a sensor system for the saxophone to capture data including when the keys 

were pressed down and information about the wind pressure blown from the 

mouth of the performer.  

The Cook/Morrill trumpet controller was designed to enable fast, accurate 

pitch detection using sensors on the valves, mouthpiece and bell [116]. Switches 

and sliders were also added to the interface to allow performers to trigger pre-

composed motifs and navigate algorithmic composition parameters [35].   

 
Figure 4 - Wind Hyperinstruments: (left) Trimpin's Saxophone, (middle) Cook/Morrill trumpet, 

(right) HIRN wind controller. 

The HIRN wind controller [26], sensed rotation and translation in both 

hands, arm orientation, independent control with each finger, breath pressure, and 

muscle tension of lips was first used to control the WhirlWind physical model 

now available in STK Toolkit [36].   

 

2.5 Body Controllers  

Placing sensors on musical instruments is certainly one way to obtain data from a 

performing artist. However, placing sensors on the human body is another method 
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that can extend the possibilities of traditional performer. One of the pioneers is 

Joe Paradiso and his work with wearable sensors for interactive media [125]. One 

of the earlier contributions was designing wireless sensor shoes that a dancer 

could use to perform by triggering a number of musical events [124]. Another 

foot controller is the TapShoe [30] designed at Interval Research that used 

accelerometers and force sensing resistors to accent beats in algorithmicly 

composed rhythmic patterns. 

 

 
Figure 5 - Body Controllers: (left to right) Tomie Hahn as PikaPika, Cook's Pico Glove, Cook's 

TapShoe, Paradiso's wireless sensor shoes. 

 
There is also early work using a host of sensor systems such as the 

BioMuse and bend sensors [94, 197]. Head tracking devices using a camera-based 

approach for musical signal processing are described in [113]. Lamascope [106] 

tracks body movement using a digital video camera and markings on a performers 

clothes. A user can control melodic sequences and key with specific gestures. 

Marcelo Wanderly and Camurri use motion capture systems to gather data from 

performing musicians gather data about ancillary movements [18, 154]. 

Experiments using accelerometers in musical performance are presented in [30, 

67, 85, 147, 150], placing them on various parts of the body including the head, 

feet and hands. The Pico Glove [28] was used to control the parameter space for 

fractal note-generation algorithms while blowing seashells. The MAGIC team at 

University of British Columbia wrote custom software [55] to use a cyber glove 

to control gesturally realized speech synthesis for performance [134].  
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2.6 Summary 

Designing systems for capturing gestures from a musical performer has helped 

expand the capabilities of the modern musician. A myriad of new compositions 

have been performed educating global audiences of the capabilities of machines 

in artistic contexts. Using sensors to analyze traditional performance technique is 

a fairly new direction; however, building the interfaces is the first step. The 

scientist’s and musicians’ work presented in this chapter generally focus on 

Western music. The work presented in this dissertation describes the first 

instruments modifying North Indian classical instruments. “Musical interface 

construction proceeds as more art than science, and possibly this is the only way 

that it can be done”[30]. 

 

 
 
 

 



 
2 0

Chapter 

3 
3 A History of Musical 

Robotics 
Solenoids, Motors and Gears playing music! 

 

robotic musical instrument is a sound-making device that automatically 

creates music with the use of mechanical parts, such as motors, 

solenoids and gears. Innovators in academic, entertainment and art 

circles have been designing musical robots for decades using algorithms and 

design schemes that are useful to the computer music society. In this chapter the 

history and evolution of robotic musical instruments are charted. In addition, 

future directions of the growing community’s collective research are discussed.   

A

To get underway, the author interviewed a number of artists and scientists who 

have built robotic instruments. These “Renaissance Men” include Trimpin, Eric 

Singer, Sergi Jorda, Gordon Monahan, Nik A. Baginsky, Miles van Dorssen, JBot 

from Captured by Robots, Chico MacMurtie, and Roger Dannenberg. Interview 

questions included specifics about the robots each one built, crucial skills needed 

in order to be a musical robotic engineer, together with personal motivations and 

future directions for the field.  

Why build a robot that can play music? Each artist/engineer had their own 

reasons. All were musicians who had a background in electrical engineering and 

computer science and wanted to make new vehicles for interesting performance. 
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Some had experience in building interfaces for musical expression using sensors 

and microcontrollers for MIDI input devices and wanted to see what would 

happen if they “reversed the equation to create MIDI output devices,” says Eric 

Singer. JBot from Captured by Robots explains his motivations, “I couldn’t play 

with humans anymore, humans have too many problems, like drugs, egos, 

girlfriends, jobs....I figured I could make a band that I could play with until I die, 

and not worry about if anyone in the band was going to quit, and kill the band.” 

Trimpin told a story about when he was five years old and began to play 

the flugelhorn. After years of practicing, he developed an allergy of the lips that 

disabled him from playing the flugelhorn anymore. Thus he took up the clarinet. 

However, again after years of practicing, he developed an allergy of the tongue 

that stopped his playing of any reed instrument. Thus, Trimpin was motivated to 

create instruments that automatically performed in order to express the musical 

ideas that were present in his innovative mind.  

Designing and building a musical robot is an interdisciplinary art form that 

involves a large number of crucial skills including knowledge of acoustics, 

electrical engineering, computer science, mechanical engineering, and machining 

(how to use a mill, lathe and welding equipment). Miles Van Dorssen comments, 

“I had to learn the mathematics of musical ratios relating to various scales and 

how waveforms propagate and behave in different shaped media.” Eric Singer 

adds one of the most daunting skills is “learning how to parse a 5000 page 

industrial supply catalogue.” From programming microcontrollers, to 

programming real-time system code, to using motors, gears and solenoids in 

conjunction with sensor technology while still having an artistic mind about the 

look, feel, transportability of the devices being designed, and most importantly, 

the acoustics and agility for sound making in order to create expressive music; 

These innovators deserve the title of “Renaissance Men”.     

In this chapter, musical robots of every type, shape and form will be 

presented. Section 3.1 discusses piano robots. Section 3.2 discusses robots used 
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for playback of audio. Section 3.3 discusses percussion robots while section 3.4 

and 3.5 discuss string and wind robots respectively. Section 3.6 presents 

discussions on future directions of the field and postulates the importance of these 

devices in many research and entertainment areas. 

3.1 Piano Robots 

The Player Piano is one the first examples of an automatic mechanically played 

musical instrument, powered by foot pedals or a hand-crank. Compositions are 

punched into paper and read by the piano, automatically operating the hammers to 

create chords, melodies and harmonies.  

A French innovator, Fourneaux, invented the first player piano, which he 

called “Pianista” in 1863. In 1876, his invention was premiered at the 

Philadelphia Centennial Exhibition. In 1896, a man from Detroit named Edwin 

Scott Votey invented the “Pianola” which was a device that lay adjacent to the 

piano and performed pressing keys using wooden fingers. Pre-composed music 

was arranged on punched rolls of paper and powered by foot pedals. In 1897, a 

German innovator named Edwin Welte introduced a Player Piano which used 

loom technology invented by Jacquard Mills, where punched cards controlled 

weaving patterns in fabric [109]. 

Up until 1905, the piano rolls were created by hand from the music score 

directly, and hence, when played lacked expressiveness. In 1905, Ludwig Hupfeld 

of Leipzig built a “reproducing piano” he named “Dea”. It recorded an artist’s 

performance capturing the expressivity, tempo changes, and shading. In 1904, 

Welte improved upon his earlier designs and created his own reproducing system 

that was powered using an electric pump. This allowed the entire apparatus to fit 

inside the piano, the foot pedal, and keys were removed, turning the player piano 

into a cabinet-like musical box [109].  



 
2 3

In 1886, the German Richard Eisenmann of the Electorphonisches Klavier 

firm positioned electromagnets close to a piano string to induce an infinite sustain. 

This method was not perfected until 1913 [109]. This led the way to electronic 

systems for control of mechanical pianos. Piano rolls were replaced by floppy 

disks, then compact disks, then MIDI, then software on laptops and software 

programs like MAX/MSP [135] and ChucK [190].      

Today, automated pianos controlled by MIDI data can be purchased from 

companies such as QRS Music14 and Yamaha15. QRS Music made a piano called 

“Pianomation” which can be retrofitted to any piano, while Yamaha makes the 

factory installed “Disklavier” system.   

In the 1980’s Trimpin designed the “Contraption Instant Prepared Piano 

71512” [175] (Figure 6(a)) which “dramatically extends the whole harmonic 

spectrum by means of mechanically bowing, plucking, and other manipulations of 

the strings – simultaneously from above and below – through a remote controlled 

MIDI device.” A combination of mechanized motors can tune the instrument, 

alter the frequency ratio and expand the timbre of the instrument. It can be played 

by a human performer or a piano adaptor (Figure 6(b)) which strikes the keys 

automatically (similar idea to Votey’s first “Pianola”). 

 

(a)                            (b) 
Figure 6 - Trimpin's automatic piano instruments (a) contraption Instant Prepared Piano 71512[175] 

(b) piano adaptop that strikes keys automatically 

 

                                                 
14 http://www.qrsmusic.com/ 
15 http://www.yamaha.com/ 
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Another approach is the humanoid technique in which the engineers model 

the entire human body performing an instrument. A team at Waseda University in 

Tokyo created the famous musical humanoid WABOT-2 which performed the 

piano with two hands and feet while sight-reading music with its own vision 

system [141]. 

3.2 Turntable Robots 

In the 1970s, musicians did not have the luxury of technology that could play 

back a specific sound on cue with a variety of interfaces, such as samplers do 

today. Seeing into the future, Trimpin began creating the world’s first automatic 

turntable robot [174]. This device could be controlled to start or stop, speed up or 

slow down, go forward or go reverse, all with the signals from a Trimpin music 

protocol  (before MIDI). Further extending the concept, eight turntables were 

built, networked together, and controlled like octaves on a piano. Later, in the 

1980’s once the MIDI standard emerged, the eight robotic turntables were 

retrofitted so any MIDI Device could control them. Figure 7 shows images of the 

retrofitted robotic turntables.  

 
Figure 7 - Trimpin’s eight robotic turntables displayed in his studio in Seattle Washington. 
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3.3 Percussion Robots 

Percussion robots are presented in three categories: membranophones, idiophones, 

and extensions.  

3.3.1 Membranophones 

Traditionally, membranophones are drums with membranes [144]. Drums are 

struck with the hands or with sticks and other objects.  

One approach to creating a robotic percussive drum is to make a 

motor/solenoid system that strikes the membrane with a stick. Researchers at 

Harvard University designed a system to accomplish robotic drum rolls with 

pneumatic actuators with variable passive impedance. “The robot can execute 

drum rolls across a frequency comparable to human drumming (bounce interval = 

40-160 ms). The results demonstrate that modulation of passive impedance can 

permit a low bandwidth robot to execute certain types of fast manipulation tasks” 

[68]. 

Researchers at MIT had a different approach, using oscillators to drive 

either wrist or elbow of their robot (named “Cog”) to hit a drum with a stick. As 

shown in Figure 8, “…the stick is pivoted so it can swing freely, its motion 

damped by two felt or rubber pads. By using a piece of tape to modulate the free 

motion of the stick, the number of bounces of the stick on the drum could be 

controlled” [195].  
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Figure 8 - Williamson’s “Cog” robot playing drums. [195] 

 

The team of Dr. Mitsuo Kawato developed a humanoid drumming robot 

which could imitate human drumming using hydraulics for smooth motion [4].   

Trimpin in the 1970’s took a different approach modifying drums so they can be 

played in a new way. He built “…a revolving snare drum which creates a ‘Leslie’ 

effect as it turns rapidly in different directions” [174]. Chico MacMurtie with 

Amophic Robot Works has made a variety of robotic humanoids which perform 

drums with silicon hands as shown in Figure 9(a). [104]. 

N.A Baginsky built two robotic drummers. The first was “Thelxiepeia” 

(Figure 9(b)), which performed a rototom with a simple striking mechanism and 

used a rotorary motor to control the pitch. The second was “LynxArm” which 

could play five drums at the same time [8]. 



 
2 7

Captured by Robots has two sets of robotic drummers as well, 

“DrmBot0110” and “Automaton” (Figure 9(c)) which perform live with other 

robotic members [75].  

 

                                  (a)                                 (b)               (c) 
Figure 9 - (a) Chico MacMurtie Amorphic Drummer[104], (b) N.A Baginsky’s robotic rototom 

“Thelxiepeia”[8], (c) JBot’s Captured by Robots’ “Automation” [75] 

 

3.3.2 Idiophones 

Traditional examples of idiophones include xylophone, marimba, chimes, 

cymbals, and gongs [144]. Trimpin, designed some of the first automatic 

mechanical percussion instruments as far back as the 1970s. Using solenoids, 

modification makes it possible to control the sensitivity of how hard or soft a 

mallet strikes an object [174]. Figure 10 shows example instruments, including 

cymbals, cowbells, woodblocks, and even a frying pan! Godfried Willem Raes 

and the Logos Foundation designed many percussion mechanical devices. One of 

the most popular is the automatic castanet performer showcased in New York 

City at the International Conference on New Interfaces for Musical Expression in 

June 2007 [139].   

 
Figure 10 - Trimpin’s robotic Idiophones.[174] 
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Figure 11 - LEMUR’s TibetBot [159] 

Eric Singer with LEMUR designed the “TibetBot” [159] which performs 

on three Tibetan singing bowls, using six arms to strike and aid in generating tone. 

The arms are triggered by MIDI controlled solenoids, each pair producing a high 

tone with an aluminum arm and a low tone with a rubber-protected arm. This 

device is shown in Figure 11. 

Miles van Dorssen, in “The Cell” project created a number of robotic 

percussion instruments including an eight-octave Xylophone, Bamboo Rattle, 

high hat, gong, jingle bells, and tubular bells. [50]  

Trimpin’s “Conloninpurple” installation also fits under this category as a 

xylophone type instrument. It is a seven-octave instrument with wooden bars and 

metal resonators using a “dual resonator system”. “The closed resonator amplifies 

the fundamental tone, the open extended ‘horn’ resonator amplifies a certain 

overtone which depends on the length of the horn extension” [174]. Each bar uses 

an electo-magnetic plunger which shoots up and strikes the bar when an 

appropriate MIDI message is recieved. This instrument is shown in Figure 12.   
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Figure 12 - Trimpin’s  “Conloninpurple” [174] 

3.3.3 Extensions 

Extensions are percussion robots that do not fall into the two previous categories, 

transcending tradition to create new identities and art forms of musical sound.  

One approach is to combine many instruments in one device as seen in 

Trimpin’s “Ringo” which uses a solenoid-plunger system to strike 120 different 

instruments including xylophone bars, cylinders, bass drum, wooden cylinders, 

and many more [174]. Gordon Monahan had similar ideas, making an orchestra 

out of electronic surplus and trash that he named “Multiple Machine Matrix” 

(Figure 13 (a)).  He later made a scaled down version known as “Silicon Lagoon” 

[115]. 

LEMUR has similar motivations in the design of ModBots, which are 

modular robots that can be attached virtually anywhere. “A microcontroller 

administers the appropriate voltage to hit, shake, scrape, bow, spin, or pluck 

sound from any sonorous object with the precision one would expect from digital 

control.” ModBots are an armada of devices including HammerBots (beaters), 

SpinnerBots (wine-glass effect resonators), RecoBots (scrapers), SistrumBots 

(pullers), VibroBots (shakers), BowBot (bowers), PluckBot (pluckers)[159]. One 

example of how these were used was LEMUR’s ShivaBot that was multi-armed 

percussion Indian god-like robot [160]. 

Another LEMUR robot is the !rBot shown in Figure 13(b). This 

instrument contains rattling shakers embedded within a shell. “Inspired by the 

human mouth, the goal of !rBot was to develop a percussive instrument in which 
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the release of sound could be shaped and modified by a malleable cavity. As the 

cavity opens and closes, it effectively acts like an analog filter, shaping the sound 

of the enclosed percussive instrument” [159]. 

 

                           (a)                           (b) 
Figure 13 - (a) Gordon Monahan’s “Multiple Machine Matrix” [115] (b) LEMUR’s !rBot [159] 

 

  “Liquid Percussion” is another music sculpture installation by Trimpin, 

which is triggered by rainfall with the use of one hundred computer-controlled 

water valves. Water falls twenty feet into custom made vessels that are tuned to 

certain timbres. “I am demonstrating natural acoustic sounds … water is released 

through magnetic fields, gravity causes it to fall at a certain velocity from a 

particular height, striking a natural medium (glass, metal) and finally results in the 

sound waves being perceived as pitches and timbres” [174]. 

Another installation by Trimpin was his “Floating Klompen” (which are 

Dutch wooden shoes) which were placed in a small pond and acted as 100 

percussive sound-producing instruments with mallets inside which struck the 

shoes [174]. Another nature influenced instrument is the LEMUR ForrestBot 

[159], which has small egg-shaped rattles attached to aluminum rods whose 

length determine the frequency of harmonic vibration.  

3.4 String Robots 

Mechanical devices that perform string instruments will be presented in two 

categories: plucked bots and bowed bots. 
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3.4.1 Plucked Bots 

This category includes mechanical plucking devices that perform guitar-like 

instruments. Each one presented has its own technique and style. 

In the early 1990s, Trimpin created a series of twelve robotic guitar-like 

instruments (Figure 15(a)), an installation called Krautkontrol. Each guitar had a 

plucking mechanism (using a motor and H-bridge to change directions) four notes 

that could be fretted (using solenoids) as well as a damper (solenoid) [174]. 

N.A. Baginsky created a robotic slide guitar between 1992 and 2000 

named “Aglaopheme” (Figure 14(a)). The six stringed instrument has a set of 

solenoids for plucking and damping each string, and a motor which positions the 

bridge for pitch manipulation [8]. 

 

                (a)             (b)         (c) 
Figure 14 - (a) N.A Baginsky’s “Aglaopheme” [8] (b) Sergi Jorda’s Afasia Electric Guitar Robot [77]  

(c) LEMUR’s Guitar Bot. [160] 

 

                         (a)                                (b) 
Figure 15 - (a) Krautkontrol [174] (b) “If VI was IX” [174] at the Experience Music Project, Seattle, 

USA. 
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1n 1997, in Sergi Jorda’s Afasia [77] project, an electric guitar robot was designed 

that had a “seventy-two finger left hand”, with twelve hammer-fingers for each of 

six strings. There is also “GTRBot” from Captured By Robots that performs 

guitar and bass at the same time [75]. 

In 2003, Eric Singer with LEMUR unveiled the GuitarBot [160] that is a 

series of four string devices. Each has its own plucking device, known as a 

“PickWheel”, which is a series of three picks that rotate at a given speed. Each 

string also has a belt-driven movable bridge that travels along the length of the 

string similar to the bottleneck of a slide guitar, with a damper system at one end.   

The largest robotic guitar project to-date is a permanent installation at the 

Experience Music Project in Seattle. Trimpin’s “If VI was IX”[174] (Figure 15(b)) 

is a collection of over 500 guitars, each with self-tuning mechanisms, plucking 

actuators, and pitch manipulation devices.   

3.4.2 Bowed Bots  

This category includes mechanical bowing devices that perform violin-like 

instruments. Note that Trimpin’s and Eric Singer’s guitar-like robots have modes 

in which they are bowed.  

In 1920, C.V. Raman, designed an automatic mechanical playing violin 

[140] in order to conduct detailed studies of it acoustics and performance. This 

motivated Saunders to do similar work in 1937 [149].  

Another project is the Mubot [79, 80], which was designed in by Makoto 

Kajitani in Japan in 1989. As one can see from Figure 16(a), this device performs 

using a real violin or cello with a system for bowing and pitch manipulation.  

N.A. Baginsky also created a bowing system for his “Three Sirens” 

project to perform on bass. The device known as “Peisinoe” [8] has a motorized 

bow as well as an automatic plucking mechanism.  
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In Sergi Jorda’s Afasia, a violin robot was designed using a similar design 

to their electric guitar robot described earlier, but with one string. “This string is 

fretted with an Ebow, while the {glissando} finger, controlled by a step motor, 

can slide up and down”[77]. 

 

               (a)                                     (b)                       (c) 
Figure 16 - (a) Makoto Kajitani’s Mubot [80], (b) N.A. Baginsky’s “Peisinoe” bowing bass [8] (c) Sergi 

Jorda’s Afasia Violin Robot [77]. 

3.5 Wind Robots 

Mechanical devices that perform using wind instruments including brass, 

woodwinds and horn-type instruments will be presented in this section.  

The Mubot [79, 80], introduced in the last section also performs using a 

clarinet as shown in Figure 17(a). For over ten years, a team at Waseda University 

has been developing an anthropomorphic robot [162, 167] that can play flute. In 

their approach, the robot is similar to human shape, size and form that holds a real 

flute and performs. Trimpin, Miles van Dorssen, and Captured by Robots all have 

included automatic horn shaped instruments on many of their different 

installations and devices [50, 75, 174]. Toyota designed a humanoid robot which 

cannot only walk, but can play a real trumpet with artificial lips16!   

There are also many teams that have built robotic bagpipes. The first set 

was presented in 1993 ICMC in which the team designed a custom constructed 

                                                 
16 Available at http://www.toyota.co.jp/en/special/robot/ (July 2007).  
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chamber fitting to traditional pipes [120]. The system used a belt-driven finger 

mechanism. Afasia also had a “Three-Bagpipe Robot” shown in Figure 17(b). 

“Each hole can be closed by a dedicated finger, controlled by an electro-valve. 

Three additional electro-valves and three pressure stabilizers are used for turning 

the blow on and off” [77]. “McBlare” [43] (Figure 17(c)) is a the latest version of 

a robotic bagpipe player, which made an appearance at ICMC 2004 in Miami by 

Roger Dannenberg and his team at Carnegie Mellon. This device actually 

performs using a traditional set of bagpipes. A custom air compressor was 

designed to control the chanter and automatic fingers.  

 

        (a)                       (b)                                             (c) 
Figure 17 - (a) Makoto Kajitani’s Mubot [80], (b) Sergi Jorda’s Afasia Pipes Robot [77] (c) Roger 

Dannenberg’s “McBlare” robotic bagpipes. 

3.6 Summary 

This chapter described a history of robotic musical instruments. Each artist or 

scientist had their own way of expressing a traditional musical performance 

technique through an automated mechanical process. These instruments aided in 

creating new musical compositions which a human performer could not achieve 

alone. The work presented generally focused on Western music. This dissertation 

describes robotic systems which metaphor North Indian Classical music. It also 

presents a paradigm for testing the performance ability of a variety of mechanical 

parts for use in performance.   
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There are certainly many directions for the future of musical robots. Roger 

Dannenberg sees a future for robotic music in the computer music field saying 

“we’ve seen how much audience appeal there is right now, which has always been 

a problem for computer musicians.” Miles Van Dorssen comments, “Eccentric, 

robotic artists are emerging from all corners of the globe. The future is in their 

imaginations.” Eric Singer adds, “soon, robots will rule the world, and now is the 

time to get on their good side.” 

As microcontrollers, sensors, motors, and other computer/mechanical parts 

get cheaper, simple musical robots are becoming commercially available in toy 

stores. One favourite toy is the friendly monkey that crashes two cymbals together, 

shown in Figure 18(a). A series of automatic instruments by Maywa Denki, 

known as the “Tsukuba Series”[46] is available commercially in Japan. Also, 

entertainment theme parks such as Walt Disney World 17  have been using 

mechanical devices to portray musical ideas for decades. A famous attraction is 

the “Enchanted Tiki Room” (Figure 18(c)) where an armada of mechanical birds 

sing and dance, providing endless entertainment for children, performing acts that 

are not possible by humans.   

Commercially available professional automatic instruments for the stage 

are still rare. However, Yamaha’s Disklaviers are found in many studios, 

conservatories, and computer music facilities across the world. Roger Dannenberg 

says “Yamaha is building a robot marching band, so I expect to see a lot of robot 

music spectacles in the future.” 

                                                 
17 http://www.disney.com 



 
3 6

 

         (a)              (b)         (c) 
Figure 18 - (a) Example of robotic percussive toy: friendly monkey playing cymbals. (b) Maywa 

Denki’s “Tsukuba Series” [46], (c) “Enchanted Tiki Room” at Walt Disney World, Orlando, Florida, 
USA. 

 
In education, courses where students build musical robots in order to learn 

concepts of the interdisciplinary art form are beginning to appear, especially in 

Japan. An example is a program at the Department of Systems and Control 

Engineering in Osaka Prefectural College of Technology described in [81]. 

Also at Waseda University in Japan, the anthropomorphic robot is used 

“…as a tool for helping a human professor to improve the sound quality of 

beginner flutist players. In such a case, the robot is not only used to reproduce 

human flute playing but to evaluate pupil’s performance and to provide useful 

verbal and graphical feedback so that learners’ performances are improved 

[162].” 
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Chapter 

4 
4             

A  History of Machine 
Musicianship 

Computer Deduced Musical Meaning  

 

esigning computer programs that will recognize and reason about 

human musical concepts enables the creation of applications for 

performance, education,  and production that resonate and reinforce the 

basic nature of human musicianship [145].” The emerging field of “Machine 

Musicianship” coined by Robert Rowe at New York University, involves building 

real-time performance systems for human/computer interaction.  

D

This chapter provides an overview of research on machine musicianship. 

There has been a great deal of work in this area and therefore not every project is 

included in this chapter. Included projects are the ones that inspired and 

influenced the research of this dissertation.  

The first section describes research in algorithmic analysis used to 

automatically obtain information from a musician. The second section describes 

projects that utilize retrieval-based algorithms in order to generate computer 

responses. The final section presents research of engineers and composers who 
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have completed the loop and created real-time systems for improvising with a 

machine on stage.  

4.1 Algorithmic Analysis 

A machine must have tools for obtaining music information from a live performer. 

As engineers, “we must labor mightily to make a computer program perform the 

analysis required of a freshman music student. Once the work is done, however, 

the program can make analysis more reliably and certainly much more quickly 

than the freshman” [145]. This section briefly describes research on automatic 

systems for obtaining information on rhythm, pitch, chordal structure, and phrase 

boundaries. Robert Rowe describes a computer system which can analyze, 

perform and compose music based on traditional music theory [145].  

Automatic music transcription is a well-researched area [93, 101, 203], yet 

not solved by any means. Automatic pitch extraction is also well researched and 

the implementation of a method used later in this dissertation is described in [15]. 

Tempo is one of the most important elements of music performance and there has 

been extensive work in automatic tempo tracking on audio signals [63, 152].  

Other systems which have influenced the community in this domain are 

Dannenberg’s score following system [42], George Lewis’s Voyager [98], and 

Pachet’s Continuator [122]. Score flowing involves listening to live performance 

from a musician and tracking the position real-time on a score. A system created 

by Roger Dannenberg in 1984, used approximate string matching techniques to 

track MIDI pitch information in a score [42]. Voyager is a computer music 

composition system by George Lewis that analyzes a improvising performer in 

real-time and controls a virtual orchestra responding to the human performer [98]. 

Pachet’s Continuator listens to the style in which a human performs a phrase and 

the machine engages in a dialogue  designed to continue the performers input 

[122]. These three real-time systems have begun to solve many of the problems of 
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algorithmic analysis to obtain useful information from the performing artist to 

generate musically meaningful responses.   

4.2 Retrieval-Based Algorithms 

This section describes projects that use a retrieval-based algorithm for generating 

computer-based responses. Retrieval refers to the act of selecting one instance 

from a large collection of digitized patterns, riffs, loops, audio, or even gestures. 

This section is included because we later describe a retrieval method for robotic 

response to a human musician. Related work will be presented in three sections: 

(1) Interfaces for Information Retrieval, (2) Retrieval for Live Performance 

Systems, and (3) Rhythm Information Retrieval.  

 

4.2.1 Interfaces for Information Retrieval  

Using sensor-based user interfaces for information retrieval is a new and 

emerging field of study. Hiroshi Ishii describes a tangible transparent interface in 

which musicBottles [74] can be opened and closed to explore a music database of 

classical, jazz, and techno music [73]. Ishii elegantly describes in his paper his 

mother’s expertise in “everyday interaction with her familiar physical 

environment - opening a bottle of soy sauce in the kitchen.” His team thus built a 

system that took advantage of this expertise, so that his mother could open a 

bottle and hear birds singing to know that tomorrow would be a sunny, beautiful 

day, rather then having to use a mouse and keyboard to check the system online.  

MusiCocktail [108] is a system influenced by the musicBottles project. In this 

system Force Sensing Resistors placed under coasters measure how much liquid 

is being added to a particular cocktail glass. By mixing drinks, pre-recorded 

pieces of music are retrieved and augmented, allowing group participation for the 

interactive live musical environment system.  
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4.2.2 Retrieval for Live Performance Systems  

There has been some initial research on using music information retrieval for live 

performance on stage. AudioPad [127] is an interface designed at MIT Media Lab, 

that combines the expressive character of multidimensional tracking with the 

modularity of a knob-based interface. This is accomplished using embedded LC 

tags inside a puck-like interface that is tracked in two dimensions on a tabletop. It 

is used to control parameters of audio playback, acting as a new interface for the 

modern disk jockey. An initial implementation of this device was the Sensetable 

[126]. In these early experiments the system was used to bind and unbind pucks to 

digital information, using the pucks for manipulation of the data, and visualizing 

complex information structures.  

Block Jam [118] is an interface designed by Sony Research that controls 

audio playback with the use of twenty five blocks. Each block has a visual display 

and a button-like input for event driven control of functionality. Sensors within 

the blocks allow for gesture-based manipulation of the audio files. Jean-Julien 

Aucouturier from Sony CSL Paris and his team proposed SongSampler [5], a 

system for music information retrieval with human interaction. The system 

samples a song and then uses a MIDI instrument to perform the samples from the 

original sound file. 

One idea proposed by our team is to use BeatBoxing, the art of vocal 

percussion, as a query mechanism for music information retrieval, especially for 

the retrieval of drum loops [84]. A system that classified and automatically 

identified individual beat boxing sounds, mapping them to corresponding drum 

samples was developed. A similar concept was proposed by [117] in which the 

team created a system for voice percussion recognition for drum pattern retrieval. 

Their approach used onomatopoeia for the internal representation of drum sounds 

which allowed for a larger variation of vocal input with an impressive 
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identification rate. [61] explores the use of the voice as a query mechanism within 

the different context of Indian tabla music.  

Another approach is to use a microphone to retrieve audio recordings from 

an instrument to retrieve gestural information using machine learning techniques. 

Initial experiments using audio recordings of a snare drum are presented in [171]. 

Using Matlab for feature extraction and a variety of machine learning algorithms 

implemented in Weka, the team was able to get recognition results of over 90 

percent. Later in 2005, this system was re-written in Marsyas to work in real-time 

[172]. This research also achieved above eighty percent recognition results using 

the Marsyas system on individual tabla strokes.   

Another area of music information retrieval (MIR) that has potential to be 

used as a live performance tool is the idea of audio mosaicing. One of the earliest 

frameworks was developed as a general concatenate synthesis system that 

combined notes taken from segmented recordings [155]. The system had the 

ability to create high quality synthesis of classical instruments using a MIDI score. 

Another framework [207] uses a system of constraints to match segments of audio 

to a target recording. This used high level features to create mosaics. Mosievius 

[97] is one framework that allows a user to create audio mosaics in real-time 

using an interactive target specification and source selection. The system is 

integrated for the use of interfaces, such as a keyboard, to specify a source.  

 

4.2.3 Rhythm Information Retrieval  

Since our project is rhythmic in nature, this section is a small overview of 

research in information retrieval with a focus on rhythm. A system for Query-by-

Rhythm was introduced in [24]. Rhythm is stored as strings turning song retrieval 

into a string matching problem. They propose an L-tree data structure for efficient 

matching. Automatic rhythm analysis is an important area of research. [62, 152] 

describes initial research on automatic tempo extraction. Obtaining rhythmic 

features for classification of ballroom dance music is discussed in [49]. [128] 
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explores using a Dynamic Programming approach to extract similarity of 

rhythmic patterns independent from the actual sounds. Using zero crossing rate to 

classify different percussive sounds is described in [64].  

4.3 Stage Ready Systems 

There are few systems that have closed the loop to create a live human/robotic 

performance system. Audiences who experienced Mari Kimura’s recital with the 

LEMUR GuitarBot [160] can testify to its effectiveness. Mari performs on a 

violin and has software that listens to her improvisations and generates robotic 

response messages to be performed by the GuitarBot.  Gil Weinberg’s robotic 

drummer Haile [192] continues to grow in capabilities to interact with a live 

human percussionist [193]. Haile has two solenoid-based robotic arms that strike 

a large darbuka drum. The machine listens to a human performer play a rhythm, 

analyzes perceptual aspects, and uses the information to play along in a 

collaborative and improvisatory manner.  

     
Figure 19 - (left) Mari Kamura and Eric Singer's GuitarBot; (right) Gil Wienberg's Haile 

4.4 Summary 

Robert Rowe writes, “By delegating some of the creative responsibility to the 

performers and some to the computer program, the composer pushes composition 

up (to a meta-level captured in the process executed by the computer) and out (to 
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the human performers improvising within the logic of the work). An interesting 

effect of this delegation is that the composer must give very detailed instructions 

to the computer at the same time that she gives up such precise direction of the 

human improviser. The resulting music requires a new kind of performance skill 

as much as it enables a new kind of composition.[145]”  

The role of machine musicianship in live performance systems continues 

to grow in importance as machines get faster and algorithms become more 

accurate. The use of this research area in the preservation of traditional music is 

also apparent as scientists design advanced transcription systems and automatic 

classification software. The work in this dissertation applies these methods to the 

context of North Indian Classical music, with automatic transcription software 

and systems to enable a human sitar performer to interact in real-time with a 

robotic drummer. 
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5     

The Electronic Tabla 
MIDI Indian Drumming 

 

abla are a pair of hand drums traditionally used to accompany North 

Indian vocal and instrumental music. The silver, larger drum (shown in 

Figure 20) is known as the Bayan. The smaller wooden drum is known 

as the Dahina. [39] The pitch can be tuned by manipulating the tension on the 

pudi (drumhead). The Bayan is tuned by adjusting the tightness of the top rim. 

The Dahina can be tuned similarly, as well as by adjusting the position of the 

cylindrical wooden pieces on the body of the drum. Tabla are unique because the 

drumheads have weights at the center made of a paste of iron oxide, charcoal, 

starch, and gum (round, black spots shown in Figure 20) [143]. Also, the Tabla 

makes a myriad of different sounds by the many different ways it is stroked. 

These strokes follow an Indian tradition that has been passed on from generation 

to generation, from guru (teacher, master) to shikshak (student) in India. The 

combination of the “weighting” of the drum-head, and the variety of strokes by 

which the Tabla can be played, gives the drum a complexity that makes it a 

challenging controller to create, as well as a challenging sound to simulate.  

T
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Figure 20 - North Indian Tabla. The Bayan is the silver drum on the left. The Dahina is the wooden 

drum on the right. 

 

This chapter discusses: 

• The evolution of the technology of the Tabla from its origins to the present day. 

• The traditional playing style of the Tabla, on which the controller is modeled.   

• The creation of a real-time Tabla controller, using force-sensors. 

• The physical modeling of the sound of the Tabla using banded waveguide 

synthesis. 

• The creation of a real-time graphics feedback system that reacts to the Tabla 

controller. 

• The experiments on measuring response time of the ETabla sensors  

 

5.1 Evolution of the Tabla with Technology  

There are a few accounts of the origin of the Tabla. One legend states that the 

Tabla was created in the 18th Century by Sidhar Khan Dhari, a famous Pakhawaj 

player. Pakhawaj is a genre of Indian drum defined by a barrel with drum-heads 

on either side. The Mrindangam, shown in Figure 21, is one drum in this family 

of drums. It was said that Sidhar Khan provoked an angry dispute after losing a 

music contest and his Pakhawaj was chopped in half by a sword. Thus, the first 

Tabla was created accidentally [47]. It is possible that the Tabla is related to drum 

pairs of antiquity, though references in old music texts completely disappeared 

after the 10th century [148]. Some Tablas were created out of clay, others out of 
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wood. As technology for producing metal alloys evolved, the Bayan started to be 

molded out of brass and steel [38].  

 
Figure 21 - The Mrindangam, a drum of the Pakhawaj family of instruments. 

 

As the popularity of the Tabla spread to the western hemisphere, nearly 

coincident with emergence of the personal computer, people began to combine the 

Tabla with computers. In 1992, James Kippen created software that allowed a 

user to input a traditional Tabla rhythmic pattern, which the computer would then 

use to synthesize an improvised pattern that followed traditional rules for 

variation [92]. In 1998, Mathew Wright and David Wessel of University of 

California Berkeley, aimed to achieve a similar goal, with a real time interface 

and unique data structure. They successfully created software that generated “free 

and unconstrained” music material, that could fit into a given traditional rhythmic 

structure [200]. Jae Hun Roh and Lynn Wilcox created two pressure sensitive 

pads to input rhythms. These patterns are then used to generate new phrases based 

on traditional Tabla patterns [142]. Additionally, Talvin Singh created a direct 

input from his Tabla to digital audio effects, achieving sound manipulations in an 

invention he calls “Tablatronics” [90].  

There are a number of commercially available hand-drum controllers such 

as Buchla’s Thunder 18 , Korg’s WaveDrum 19 , and Roland’s HandSonic 20  

discussed in Chapter 2. The ETabla project, however, uses a new physical model 

of Tabla acoustics. Our main goal is to preserve the traditional appearance, feel, 

                                                 
18 Available at: http://www.buchla.com/historical/thunder/ (January 2007) 
19 Available at: http://www.korg.com (January 2007) 
20 Available at: http://www.rolandus.com/pdf/roland/HPD-15.pdf (January 2007) 
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and performance characteristics of North Indian classical Tabla drumming, while 

electronically extending the variety of sounds available to the player. 

5.2 Tabla Strokes 

It is important to understand the traditional playing style of the Tabla to see how 

our controller takes advantage of the different strokes. Figure 22 is a picture 

showing the names of the different parts of the Tabla pudi (drum head). 

 
Figure 22 - Tabla pudi (drumhead) with three parts: Chat, Maidan and Syahi. 

 

5.2.1 Bayan Strokes 

There are two strokes played on the Bayan. The Ka stroke is executed by slapping 

the flat left hand down on the Bayan as shown in Figure 23 (a). Notice the tips of 

the fingers extend from the maidan through to the chat and over the edge of the 

drum. The slapping hand remains on the drum after it is struck to kill all 

resonance, before it is removed. The Ga stroke, shown in Figure 23 (b), is 

executed by striking the maidan directly above the syahi with the middle and 

index fingers of the left hand. When the fingers strike, they immediately release 

away from the drum, to let the Bayan resonate. The heel of the left hand controls 

the pitch of the Ga stroke, as shown in Figure 23 (c). It controls the pitch at the 

attack of the stroke, and can also bend the pitch while the drum is resonating. 
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Pitch is controlled by two variables of the heel of the hand: force on to the pudi, 

and the position of the hand-heel on the pudi from the edge of the maidan and 

syahi to the center of the syahi. The greater the force on the pudi, the higher the 

pitch. The closer to the center of the syahi, the higher the pitch. [39] 

 

 
Figure 23 - Ga and Ka Strokes on the Bayan. 

 

5.2.2 Dahina Strokes 

There are six main strokes played on the Dahina. The Na stroke, shown in Figure 

24 (a), is executed by lightly pressing the pinky finger of the right hand down 

between the chat and the maidan, and lightly pressing the ring finger down 

between the syahi and the maidan in order to mute the sound of the drum. Then 

one strikes the chat with the index finger and quickly releases it so the sound of 

the drum resonates. The Ta stroke is executed by striking the middle finger of the 

right hand at the center of the syahi, as shown in Figure 24 (b). The finger is held 

there before release so there is no resonance, creating a damped sound. The Ti 

stroke, shown in Figure 24 (c), is similar to Ta except the middle and ring finger 

of the right hand strike the center of the syahi. This stroke does not resonate and 

creates a damped sound. The Tu stroke is executed by striking the maidan with 

the index finger of the right hand and quickly releasing, as shown in Figure 25 (a). 

This stroke resonates the most because the pinky and ring fingers are not muting 

the pudi. [39] The Tit stroke, shown in Figure 25 (b), is executed similar to Na, by 
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lightly pressing the pinky finger of the right hand down between the chat and the 

maidan, and lightly pressing the ring finger down between the syahi and the 

maidan. The index finger then strikes the chat, quickly releasing to let it resonate. 

The index finger strike on the chat is further away from the pinky and ring finger, 

than it is on the Na stroke. Tira is a combination of two strokes on the Dahina, 

which explains the two syllables of the stroke. It is executed by shifting the entire 

right hand from one side of the drum to the other. It creates a damped sound at 

each strike. This stroke is shown in Figure 25 (c) and Figure 25 (d).  

 
Figure 24 - Na, Ta and Ti strokes on the Dahina. 

 

 
Figure 25 - Tu, Tit, and Tira strokes on the Dahina. 

5.3 The MIDI Tabla Controller 

We modeled our controller based on the hand positioning and movements of the 

strokes discussed.  Note that our interest was not specifically to simply copy the 

traditional Tabla (“[just] copying an instrument is dumb, leveraging expert 

technique is smart” [31]), the goal of this project was to make an instrument that 

could be used to create an audio and visual experience that allows a performer 

expression, and enamors the audience. The ETabla is decoupled from the 

computer generated sound source and hence achieves a new versatility while 
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preserving the refined performance practices of traditional play. To leverage the 

existing technique of a skilled Tabla player and to actually test the instrument we 

decided it would be important to work with an expert traditional Tabla player. We 

decided that the ETabla needed to support traditional strokes accurately. We used 

square force sensing resistors (square FSR) to input force of different finger 

strikes, and long force sensing resistors (long FSR) to obtain the position of finger 

strikes as well as force.21 All events are converted to MIDI signals and sent out 

via a MIDI output.      

 

5.3.1 The Bayan Controller  

The Bayan Controller was created using two square FSRs, and one long FSR. 

Figure 26 shows a layout of these FSRs. The top square FSR is used to capture Ka 

stroke events, when a player slaps down with their left hand. If it receives a signal, 

then the other two FSRs are ignored. The square FSR in the middle captures Ga 

stroke events, when struck by the middle and index finger of the left hand. The 

long FSR controls the pitch of the Ga stroke events, using two variables: force 

and position. The greater the force exerted by the heel of the left hand, the higher 

the pitch. The closer the heel of the hand gets to the Ga FSR, the higher the pitch. 

The pitch can be bent after a Ga stroke is triggered. The circuit diagram of the 

Bayan controller is shown in Figure 27.     

 

                                                 
21 Available at: http://www-ccrma.stanford.edu/CCRMA/Courses/252/sensors/sensors.html  
  (January 2007) 
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Figure 26 - Electronic Bayan Sensor Layout. 

 

 
 

Figure 27 - Circuit diagram of Bayan Controller. The Dahina Controller uses similar logic. 

 

5.3.2 The Dahina Controller 

To implement the Dahina Controller, we used four FSRs: two long FSRs, one 

square FSR, and one small FSR. Figure 28 shows a layout of these FSRs. The 

small FSR triggers a Tit stroke event. It measures the velocity of the index 

finger’s strike. The square FSR triggers a Tira stroke event. It measures the 

velocity of the hand slapping the top of the drum. If the Tira FSR is struck, all 

other FSRs are ignored. If the Tit FSR is struck, both long FSRs are ignored. The 

long FSR on the right in Figure 28 is the ring finger FSR, and the long FSR on the 
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left is the index finger FSR. If there is a little force on the ring finger FSR 

(modeling a mute), and the index finger FSR is struck at the edge of circle, a Na 

stroke is triggered. If the index finger FSR is struck near the center of the circle, a 

Ta stroke is triggered. If there is no force on the ring finger FSR, and the index 

finger FSR is stuck, then a Tu stroke is triggered. When the ring finger FSR is 

struck with enough force, and not held down, then a Ti stroke is triggered. The 

circuitry of this controller uses similar logic to that of the Bayan. Thus we have 

modeled every stroke that we discussed above. Figure 29 shows a picture of both 

controllers in their constructed Tabla encasements.22 The force sensing resistors 

were placed on top of custom built wood pieces, and covered with neoprene as a 

protective layer, making the instrument acoustically quiet, and providing a 

flexible texture for ETabla performance. 

 
Figure 28 - Electronic Dahina Sensor Layout. 

 

                                                 
22 The wood pieces were custom built by Brad Alexander at County Cabinet Shop 
in Princeton, NJ. 
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Figure 29 - The Electronic Tabla Controller. 

5.4 Sound Simulation 

The electronic Tabla controller signals can be used with any standard MIDI 

device to produce sound. However, the typical synthesis methods do not properly 

mimic the dynamics of the Tabla drums and hence the performance sound in 

relation to strokes is not well captured. Physical modeling is known to allow for 

direct physical interactions and hence the control values produced by the Tabla 

controller can be directly used as inputs rather than first finding a mapping that 

relates controller-output to synthesis-relevant parameters. We use the “banded 

waveguides” which were originally introduced for one-dimensional structures like 

bar percussion instruments [54] but has been generalized to higher-dimensional 

structures including membranes [53]. Here we will discuss only essential features 

of the ideas as they pertain to the ETabla controller and the reader is referred to 

[53] for a more detailed discussion of the synthesis method. 

Banded waveguides are a generalization of digital waveguide filters [161] 

that accommodate complex material behavior and higher dimensions by modeling 

the traveling waves for each modal frequency separately as is depicted in Figure 

30. 
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Figure 30 - Banded Waveguide Schematic. 

Modes come about as standing waves, which is equivalent to the condition that 

traveling waves close onto themselves in phase. Hence the task of finding 

geometric positions from modes corresponds to finding paths that close onto 

themselves and finding the matching mode for that path. This problem has been 

studied by Keller and Rubinow [91] and the construction of finding these paths on 

a circular membrane is depicted in Figure 31. We have taken these paths as 

approximate representations as they were constructed for uniform membranes. 

Tabla membranes are non-uniform and heterogeneous in material. The effect of 

this non-uniformity is the tuning of the partials to harmonic ratios. The physical 

effect of the successive loading of the membrane lowers the frequencies of the 

partials [58]. This is equivalent to a slower propagation speed in the medium. 

Alternatively this can be viewed as a virtual lengthening of the closed path 

lengths of modes. The effect is modeled in this fashion in banded waveguides.  
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Figure 31 - Figures showing construction of paths that close onto themselves. 

 

Tabla strokes correspond to feeding strike-velocities into the delay lines at the 

correct positions. A particularly interesting performance stroke is the Ga stroke 

performed on the Bayan depicted in Figure 23 (c). It includes a pitch bend that is 

achieved by modifying the vibrating area due to pushing forward. The exact 

dynamic behavior of this interaction is so far unknown. We make the simplified 

assumption that this can be viewed as a moving boundary, which in the case of 

banded waveguides corresponds to a shortening of the closed wavepaths, in turn 

corresponding to a shortening of the delay-lines of the model. The stroke starts at 

about 131 Hz (C-3) and ends at about 165 Hz (E-3) and hence corresponds to a 

26% pitch increase and banded wavepath shortening. The simulation was 

implemented in C++ on a commodity PC and runs at interactive rates. A 

comparison of a recorded and a simulated Ga stroke can be seen in Figure 32. 

Both strokes are qualitatively similar and are judged by the listeners to be 

perceptually close. Since banded waveguides are based on standard linear 

waveguide filter theory, we can make the sonic model as accurate (or absurd) as 

we like.  
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Figure 32 - Sonograms comparing recorded (left) and simulated (right) Ga strike. 

 

5.5 Graphic Feedback 

The visual system for the ETabla is designed to augment the experience of the 

ETabla for both the performer and audience through the generation of a visual 

display which responds in parallel with the aural elements of the system. Since 

audio synthesis requires most of the processing power on the audio machine, 

control messages from the tabla are routed to a second machine for graphics 

processing, using custom software built in C++/OpenGL. We will describe the 

response of the system to Bayan strikes. 

For the concert performance, our concept for the graphics system was a 

combination of geometric forms and fluid motion.  To respond to the percussive 

energy of ETabla music, the visualization we developed is based on a particle 

model in which strikes made by the player appear as patterns of small shapes, 

which form the basic visual elements of the display. As the player makes Ka and 

Ga strokes on the Bayan controller, particle bursts appear as lines, circles, 

cardioids, and other shapes depending on the type and quality of each strike as 

transmitted by the drum. Velocity and pitch are mapped to the size, color, 

complexity and physical characteristics of the patterns we create. Additional 
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control messages can be sent to the system by another performer to modify the 

mapping of ETabla signals to visual response as the performance progresses. 

Once created, the motion of these particles is governed by a dynamically 

changing vector field that imposes forces on each particle to achieve a particular 

overall effect: Strike particles appear, break apart, and return into the background. 

The behavior of the field is governed by a distribution of ‘cells’ that determine 

how forces are exerted in their vicinity in response to the number, distribution, 

and motion of particles in their domain [163]. Through the feedback of cell-

particle dynamics, we obtain a system with a short and long term visual response, 

as the energy introduced by tabla strikes excites secondary behavior in the 

physical system.  By properly modifying the characteristics of particles and cell 

response behaviors, we can evoke an impression of real-world systems: fanning a 

flame, striking the surface of water, blowing leaves, or other more abstract 

behaviors (see Figure 33).   

 
Figure 33 - Different modes of visual feedback. 

 

Feedback from users of the ETabla commented that they would sometimes 

choose to ‘play’ the visuals using the controller, which is an interesting reversal of 
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our expectation - that perhaps the visual feedback should lead the performer 

towards playing certain rhythms.  Following initial performances, we modified 

the software to provide a richer visual vocabulary. Beyond its use in performance, 

visual feedback is also helpful to display the state of our virtual drum.  Though 

the Bayan is responsive to changes in tension on the head of the drum, our 

physical controller does not provide this degree of response.  However, we may 

create the sense of an increase or decrease in tension on the drumhead through 

compressive or decompressive effects to the visual system.  As a teaching tool, 

the system could display the names and hand positions for the various strikes 

being made, so that a novice user could reinforce their knowledge and correct 

their technique.   This is an area for future research and implementation. 

5.6 User Study of the ETabla Sensors 

We administered three experiments on measuring the response time of the ETabla 

sensors. We recruited a musician who has been playing Tabla for ten years as our 

unbiased ETabla user who we tested throughout the development process. In the 

first test the player simply tried to trigger the eight basic traditional Tabla strokes 

discussed above. He was able to trigger all the strokes, but with a noticeable 

margin of error. We hypothesized that the errors occurred because at this point the 

ETabla was not mechanically reliable, as the sensors were taped to a slab of wood 

and a piece of cardboard which were sitting on top of a Tabla shell, without 

enough support to sustain reliable play.  The results of this first battery of tests 

was sufficient, however, to verify that we had put the sensors in the right places, 

and a trained Tabla player could execute the strokes, even though he was not 

specifically trained on the ETabla. 

After we had successfully created a secure system for encasing the circuit 

boards and fastening the sensors to the ETabla body, using custom built wood 

pieces, we performed a second round of user tests (A on Figure 34)  We measured 
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the response time of each sensor on the EDahina (the right hand drum of the 

ETabla). A metronome was used to measure the maximum rate at which one 

could strike a particular FSR before it became unreliable. We connected the MIDI 

Out messages produced by the ETabla to the Roland HandSonic. The tester was 

asked to perform one strike per metronome click. The metronome speed was 

increased as long as there was a sound response without immediate problems. 

Figure 34 is a chart showing the response times of the EDahina by stroke in 

comparison with a later test. From this user test, it was clear that the two position-

only FSRs were responding well. However, the long linear position FSRs were 

running too slow. This was because the force variable for the long FSR was 

captured through a slower data acquisition process. We also felt that the ring 

finger FSR was not calibrated correctly in the code and thus finger strike 

responses were difficult to pick up. 

 
Figure 34 - User testing results of the ETabla of User Test A and B. The tests measured maximum 

strike rate for each sensor as evaluated by an expert performer. 

 

To solve these timing problems, an upgrade of the microprocessor was carried out, 

yielding a system that could execute commands 2.5 times faster23. In user test B, 

our tester was successfully able to play a recognizable Tin Taal rhythm, a 
                                                 

23 Upgrade from Basic StampII to Basic StampIIsx, BASIC Stamp Programming Manual. version 
2.0. Parallax Inc. Available at : http://www.parallaxinc.com (January 2007). 



 
6 1

traditional sixteen beat Tabla cycle, at a moderate tempo. He then tested the 

response time of the EDahina. Figure 34 also shows the results of his tests. Once 

again, metronome speed was successively increased as long as the tester at the 

given speed achieved a sound response without immediate problems. The Ta 

stroke on the ring finger FSR was the slowest for this second user test, only being 

able to be hit at 60 beats per minute. With the new upgrade, the ETabla could now 

register the same stroke 3.5 times faster at 220 beats per minute. The 

improvement can be clearly seen in Figure 34. The Tira and Tit strokes were very 

fast and were acceptable for performance. The next goal was to raise every stroke 

close to this level. The tester complained that the two long FSRs were generally 

difficult to strike and get an immediate response. We knew we could fix this with 

recalibration. The tester also recommended that the edge of the Index Finger FSR 

should always play a Na stroke and the center should always play a Tu stroke. 

This improvement made the response time much faster.   

The remaining improvements to the responsiveness were carried by 

carefully optimizing the microcontroller code. By some reordering of execution, it 

was ensured that no mathematical manipulation of variables occurred unless it 

was needed for a particular event. Wherever possible, divide and multiply 

operations were converted to shift right and left shift operations to save 

instruction time.  After these improvements were tested, the behavior of the 

ETabla was up to the desired performance level, and we were ready to use the 

ETabla in a live concert setting. 

5.7 Summary 

We presented the ETabla, a real-time device for Tabla performance. Its design 

was motivated by the traditional instrument and the design takes classical stroke 

styles into account. We demonstrated how an implementation can be achieved 

that allows for the use of the ETabla in live performance, allowing for the 
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traditional performance style, but also augmenting the traditional interactions in 

various ways. Because the interaction and sound production mechanism have 

been decoupled, the performer can choose the method of sound production, 

independent of the physical interaction. Hence, non-standard sounds and 

alternative musical expressions can be presented while maintaining the 

performance expression of the traditional Tabla. In addition this decoupling 

allows for performance input to drive output in other modalities. We illustrate this 

ability by providing performance-dependent visual feedback. In concert, this 

visual feedback has been used as visual background for performed musical pieces. 

Similar visual feedback could, however, also be used for teaching purposes by 

lending additional cues to the student. This aspect remains to be explored in detail. 

Another interesting future application is the use of the ETabla to record 

performance styles of expert tabla players. This information could be used to 

facilitate teaching of novice players and the study of classical Indian drumming 

styles. 
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The Electronic Dholak 
Networked Performance: A Dream worth Dreaming? 

 

he Dholak is a multiplayer Indian folk drum which inspired the idea of 

exploring multiplayer North Indian networked performance. Is the 

concept of musicians in multiple locations around the world performing 

together in real time using high speed Internet, with no latency, in front of live 

audiences a dream worth dreaming? Is there a valid point in researchers 

developing novel systems for networked performances, often spending large 

amounts of grant money to see this dream comes true? Is the music created using 

these systems worthy of being listened to, or should the performances be called 

‘live music’? Are the performers really interacting with each other over these long 

distances? 

T

These are questions being asked by researchers who collaborate to create 

‘teleconcerts’ or ‘remote media events’ as an application development project for 

their expensive Internet2 (USA) and CaNet (Canada) lines. Dreamers at Stanford 

University’s CCRMA, McGill University, New York University, University of 

Southern California, Rensselaer Polytechnic Institute, the Electrotechnical 

Laboratory in Japan, and many other research facilities across the world have 

questioned and solved different pieces of the networked performance puzzle. 
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Standing on the shoulders of these innovators, our team has created a new system 

for live network performance, to help answer some of the questions for ourselves. 

This chapter will present: 

• The background to the development of networked media systems 

• The design details of the GIGAPOPR networked media software 

• The creation of the real-time EDholak multiplayer network controller 

• The creation of veldt, a real-time networked visual feedback software that 

reacts to EDholaks, and other MIDI devices in multiple locations 

• Concluding remarks and future applications of networked media systems.  

 

We will show our full methodology and design, as well as demonstrate that 

the implementation of high-quality, low-latency, live networked media 

performance can be straightforward and relatively inexpensive. Further, we 

evaluate the validity of the aesthetic of the network performance and whether the 

dream is indeed worth dreaming. 

6.1 Background 

In the mid-1990s, a team at the Chukyo University of Toyota in Japan performed 

experiments using ISDN (128 kbps) to connect two or more concert venues with 

teleconferencing technology to allow musicians in remote locations to maintain 

‘musical eye-to-eye contact’. Later, in 1997, the team developed a system to use a 

low-bandwidth Internet connection, consisting of an Internet server relay which 

redirected musical messages, and musical synthesis software clients at three 

different venues. Each unique site controlled frequency values of a single 

oscillator, and performers on stage transmitted controller data to change their 

frequency in response to another site’s change [169]. 

In 1997, at the USA/Japan Inter-College Computer Music Festival in 

Tokyo, Japan, a team at the Electrotechnical Laboratory in Tsukuba, Japan, 
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presented their work on a Remote Music Control Protocol (RMCP) that integrated 

the MIDI and UDP protocol to allow users at separate workstations to play as an 

ensemble. This system also had visualization feedback software, which reacted to 

what a user performed [62]. The University of California San Diego and the 

University of Southern California collaborated in the Global Visual Music Project 

with the pieces Lemma 1 and Lemma 2, an improvisatory jam session between 

Greece and the United States [137] presented at the International Computer Music 

Conference in 1998. Presented all over the world in different versions, MIT’s 

Brain Opera allowed observers to participate and contribute content to the 

performance via the Web [124].  

In September 1999, at the AES conference in New York, the Society’s 

Technical Committee on Network Audio Systems demonstrated a live swing band 

originating at McGill University in Montreal, streamed over a multi-channel 

audio and simultaneous video connection (combination of UDP and TCP protocol) 

to a theatre at New York University, where on stage a dancer reacted to the high 

quality 48 kHz, 16 bit, surround sound music [202]. This system was also used to 

network concerts between Montreal and the University of Southern California, in 

Los Angeles and later Montreal and Japan. 

In spring 2000, a team at Stanford University’s CCRMA presented a 

networked concert between two multi-channel venues on campus, both with live 

audiences using the campus intranet and TCP protocol, to test whether an accurate 

sound image of the remote space could be projected locally. That summer, using 

the same system at the Banff Center in Canada, ten-channel concert feeds from 

two concert halls were transported to a mixing room, and mixed down in real time 

[22]. These systems use the SoundWIRE, software that evaluates the reliability of 

a network by creating an ‘acoustic ping’ between the two host computers [21, 23]. 

Later in 2004 this system was used to network three geographically distinct 

locations (California, Montana and Victoria) in a project entitled ‘Distributed 

MahaVishnu Orchestra’. 
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The Integrated Media Systems Center at the University of Southern 

California (USC) has developed YIMA, an end-to-end architecture for real-time 

storage and playback of high-quality multi-channel audio and video streams over 

IP, as part of their Remote Media Immersion project. In October 2002, the team 

successfully broadcast (16 channels of 24-bit 48 kHz samples per second audio 

and MPEG-2 720p formatted video at 45 Mb/s) a concert by the New World 

Symphony in Arlington, Virginia to an on-campus venue in Los Angeles, 

California. In September 2003, the system was tested internationally with a 

transmission to Inha University in South Korea [156]. 

Other projects in the last few years have confronted and exploited 

different aspects of networked music. The Technophobe and the Madman was an 

Internet2-distributed musical performance collaboration between New York 

University and Rensselear Polytechnic Institute [146]. FMOL [76] is a Virtual 

Music Instrument that was used between Dresden, Germany and Barcelona, Spain 

in 2001 [78]. PeerSynth is a framework developed for peer-to-peer networked 

performance that makes use of latency as a parameter of synthesis [165]. 

SoundMesh is an application designed to mix audio files in a live Internet2 

improvisation [69]. The Auricle website is a kind of audio analysis/synthesis 

enhanced chat room [60]. Most of these do not attempt to mimic live performance 

over distance directly. 

For more information, readers are directed to [10], [59] and [191], that 

survey network systems for music and sonic art. Also, another innovative article 

is a 1998 AES white paper [11] which forecast visions of network media 

performance that have influenced most of the research presented. 
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6.2 GIGAPOPR:  Networked Media 
Performance Framework 

GIGAPOPR is a framework for low-latency, bi-directional network media 

performance over a high-bandwidth connection used for the Gigapop Ritual 

performance at NIME 2003. It transmits multichannel uncompressed audio, 

uncompressed video, and MIDI data among an arbitrary number of nodes. 

GIGAPOPR served as the software framework for the Gigapop Ritual, discussed 

in detail below. 

 

6.2.1 Challenges in Design 

6.2.1.1 Latency 
GIGAPOPR was designed to enable performers at geographically remote 

locations the ability to cooperate and interact with each other – recreating, as 

much as possible, the experience of playing together at the same place. Thus, one-

way latency and round-trip latency both have critical effects on the quality of the 

interaction. Experiments conducted by CCRMA on quantifying the effects of 

latency in network performance show that humans perform best at roundtrip bi-

directional audio latency between 20 and 30 milliseconds [65]. This was the 

toughest challenge our team had to face in building the framework. 

6.2.1.2 Network Porridge 
We define network porridge as any prolonged and perceptually significant audio 

artifact caused by some aspect of the network transmission. Network porridge, 

like the name suggests, is highly crackly and poppy audio resulting from one or 

more audio frames failing to reach the destination machine in time. One common 

cause of network porridge is inconsistent delay introduced by the network during 

transmission, as a result of dropped or delayed packets. Another cause may be 

contention between the network interface card (NIC), soundcard, and/or the CPU 



 
6 8

on the sending or receiving machine. For example, if the sending machine tries to 

send a large single chunk of data over the network (such as an entire frame of 

uncompressed video), it may ‘tie up’ the NIC and delay the transmission of 

several frames of audio, even when there is ample bandwidth to support both. 

6.2.1.3 Compensation for different sound card clock speeds 
Most sound cards have an onboard clocking mechanism, which times the 

capture/playback of audio data. However, it is often the case that the sound card 

on one machine may have a clock that is slightly faster or slower than another, 

even if both sound cards are the same model. If the difference in clock speeds of 

the sending and receiving machines is great enough, then eventual clicks (or 

porridge) may be introduced. 

6.2.1.4 Robustness 
The Internet is inherently a best-effort transmission system. Packets can be lost, 

duplicated, and/or reordered between the end hosts. Transmission control 

protocols (such as TCP) alleviate this issue by tracking and acknowledging packet 

delivery, and re-transmitting potentially lost packets. However, since audio data 

in a live-networked performance must take place in a highly timely manner, 

packet re-transmission is impractical. Therefore, a system should respond robustly 

and reasonably to potential network problems. 

 

6.2.2 Design and Implementation 

6.2.2.1 Simplicity 
The design and implementation of GIGAPOPR is straightforward, with only a 

few considerations and optimizations for low-latency, high-bandwidth throughput. 

The framework is divided into three subgroups of applications, one each for audio, 

MIDI and video. Each group of applications is designed to run in a separate, 
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autonomous process space. The challenge is finding a way to utilize the potential 

of the network in a real-time fashion. 

 
Figure 35 - Flow Control and Sequencing of GIGAPOPR. 

6.2.2.2 Flow control and Sequencing 
All data packets are transmitted using the GIGAPOPR protocol over UDP. UDP 

provides efficient and error-checked delivery of packets but is without flow 

control or congestion control. For our purposes, this is desirable since the system 

cannot afford to wait for re-transmission of lost audio packets (TCP-esque re-

transmission is partly based on timeouts). If a packet is lost, then either the 

previous frame or silence is played. Furthermore, if the network is congested, 

there is little that an end-to-end connection can do. In this respect, we hope for the 

best from the bandwidth ceiling of a high-performance network. In our experience 

running over Internet2 and CA2Net, this was not a significant problem. 

A sequence number is sent in the header of every GIGAPOPR audio 

packet. This simple sequence numbering scheme enforces ordering of incoming 

packets, allows the receiver to detect when packets were lost, and also makes 

possible redundant transmission of data. For example, it is possible for 
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GIGAPOPR to send copies of each frame of data to increase the chance of at least 

one of the packets reaching the destination. Sequence numbering for video is 

more involved since it sends sub-frames. 
 

6.2.2.3 giga_audio 
giga_audio is a client/server application for capturing audio at one host and 

sending it with low latency to a remote host for playback. The mechanism is very 

straightforward. The capturer/sender application reads in frames of audio from the 

A/D converter and performs some minimal transformations on the data (type-

casting/endian-adjustment) and encloses the data in a packet and sends it out 

using the transmission module. The size of the audio frame is adjustable. As is to 

be expected, larger frames will contribute to overall latency, while smaller frames 

may incur extra network overhead that can lead to dropped packets. For our 

performance, we used 48,000 Hz, stereo, with buffer sizes of 512 sample frames. 

Additionally, redundant copies of each frame can be sent. The receiver/playback 

application receives the packets, performs simple sequence number checks 

(discarding out-of-date packets, and updating the next packet sequence number to 

expect) and also manages redundancy, if it is in use. It then pulls out the frames 

from each packet and sends them to the DAC for playback. 

At the time of the performance, giga_audio was implemented using the 

Synthesis ToolKit (STK) and RtAudio for capture/playback and over a custom 

transmission module over UDP. 

 

6.2.2.4 giga_midi 
giga_midi is the MIDI counterpart of giga_audio. The ‘midi in’/sender host sends 

one or more MIDI messages in a single packet to the receiver/‘midi out’ host. The 

MIDI data receiver can be mapped to onboard or external MIDI devices. 

giga_midi was implemented over a custom module written with ALSA and also 

sent over UDP. 
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6.2.2.5 giga_video 
The giga_video application follows the client/server model used by giga_audio. 

The video capture/sender application grabs video frames from any video source 

and sends it over UDP to the receiver/video playback application. 

The design favours the timely transmission of audio and MIDI over that of 

video. Each video frame is actually sent in separate chunks, and sent with a small 

intentional delay between each one. This is to avoid tying up the NIC for a single 

large transmission, which might delay one or more audio packets from being sent 

on time. In GIGAPOPR, uncompressed 480 by 320 video frames are segmented 

into 30 by 40 equal-sized chunks and sent separately. 

 

6.2.2.6 Configuration 
We ran Linux (Redhat 9) with ALSA and the Planet-CCRMA 24

 low-latency 

kernel. The audio/MIDI data were transmitted between two machines: a Pentium 

4/ 2.8 GHz CPU/1 GB of RAM. The video transmission employed two additional 

machines: Pentium 3/ 400 MHz/128 MB of RAM. The real-time graphical 

feedback ran on a fifth machine: Pentium 3/800 MHz/ 512 MB of RAM, with 

GeForce 3 graphics card. Finally, a Pentium 3 laptop controlled additional devices 

on-stage. 

 

6.2.2.7 Performance and Optimisations 
Perhaps the most striking reflection from our implementation of GIGAPOPR is 

that on today’s (and tomorrow’s) high-performance networks, it really doesn’t 

take much to get a high-quality bi-directional system up and running. For the most 

part, it suffices to have competence in implementing network and audio 

processing interfaces without introducing significant additional latency, and to 

know the right knobs to tweak. In this section, we discuss some factors that can 

                                                 
24 Available at: http://ccrma.stanford.edu/planetccrma/software/ (February 2005). 
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greatly affect overall latency, as well as suggestions from our experience to 

reduce latency.  

Several factors contribute to the overall audio latency of the system: (i) 

network latency between the source and destination hosts, (ii) end-host latency 

that involves buffering, context switching, processing, sending data to NIC, 

network stack processing, and the actual transmission time on the NIC’s hardware, 

and (iii) hardware latency of sound cards and the host machine itself. 

The network between the end hosts is the least controllable aspect of the 

system, in today’s best-effort, end-to-end Internet. There is no direct way to even 

influence the routing of packets, or to avoid or respond to congestion. Until more 

programmable, dynamically routable networks become mainstream, we cross our 

fingers and leave these aspects to the underlying protocols and existing routing 

algorithms. 

As for the end-host latency, we do have both direct and indirect control. 

Starting with the underlying operating system, it can be beneficial to install low 

latency kernel patches (if running Linux) such as the one packaged with Planet-

CCRMA. On Mac OSX, setting the scheduling policies to round-robin for audio 

and network processing threads while keeping the rest as default first-in-first-out 

can significantly improve stability and latency for lower buffer sizes. Boosting 

process priority on both systems can also be helpful. 

Finally, machine hardware and soundcard quality can have a big impact on 

latency and stability. For the machine itself, good bus performance is crucial, as 

audio I/O, network I/O, and often (depending on the architecture) memory 

operations may all contend for and share the bus. Yes, faster machines with more 

memory are good, too. Lastly, soundcard latency can vary vastly from model to 

model and across vendors. It is worthwhile to ensure all hosts have low-latency 

soundcards with appropriate configurations and settings. 

At the time of the performance, we clocked between 120 and 160 ms 

round-trip latency between Princeton, NJ, and Montreal, Canada. We were able to 
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perform using 120 ms latency, and did not implement all of the ‘performance tips’ 

mentioned above – many of them came out of subsequent experiments. We are 

optimistic that we can do better on today’s improving networks and from 

experiences we have gained since. 

 

6.3 The Electronic Dholak Controller 

6.3.1 The Traditional Dholak of India 

The Dholak (shown in Figure 36) is a barrel shaped hand drum originating in 

Northern India. It has one membrane on either side of the barrel, creating higher 

tones on the smaller end, and lower tones on the larger end [95]. The smaller side 

has a simple membrane, whereas the larger side has Dholak masala (a 

composition of tar, clay and sand) attached to the inside of the membrane, to 

lower the pitch and produce a well defined tone. The Dholak can be tuned in two 

ways depending on the type of drum. The traditional Dholak is laced with rope, so 

tuning is controlled by adjusting a series of metal rings that determine tightness of 

the rope. Modern Dholaks have metal turnbuckles which are easily adjusted for 

desired tone. The Dholak is widely used in folk music of villages of India. It is 

common for folk musicians to build Dholaks themselves from commonly 

available material. They then use the drums in musical rituals and special 

functions such as weddings, engagements and births. [157] 
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Figure 36 - Traditional Dholak. 

Two musicians play the Dholak. The first musician strikes the two 

membranes with their left and right hands. There are two basic playing techniques; 

the open hand method is for louder playing, while the controlled finger method is 

for articulate playing. There are a few different positions to play the Dholak, but 

the most popular is squatting with the drum in front, the bass head on the left, and 

the treble head on the right. The second musician sits on the other side of the 

drum, facing the first musician. They strike the barrel with a hard object, such as a 

spoon or stick, giving rhythmic hits similar to a woodblock sound. [7] 

 

6.3.2 The MIDI Dholak Controller 

The design of the Electronic Dholak (shown in Figure 37(a)) is inspired by the 

collaborative nature of the traditional drum. Two musicians play the EDholak 

(shown in Figure 37(b)), the first striking both heads of the double-sided drum, 

and the second keeping time with a Digital Spoon and manipulating the sounds of 

the first player with custom built controls on the barrel of the drum and in 

software. We further explored multiplayer controllers by networking three 

drummers playing two EDholaks at two geographically diverse sites. 
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            (a)                          (b)                (c) 

Figure 37 – Two-player EDholak with Piezo sensors, digital spoon, CBox and custom built MIDI 
Control Software. 

 

Finger strikes are captured by five piezo sensors (three for the right hand 

and two for the left hand) which are stuck directly on the EDholak’s drum skins. 

Sensors are placed in positions that correlate to traditional Indian drumming 

(similar to tabla strokes described above). The left drum-skin head captures Ga 

and Ka strokes, while the right hand drum-skin captures Na, Ta and Ti strokes. 

The Digital Spoon has a piezo sensor attached to the back of a flat wooden 

spoon. There is neoprene padding covering the piezo to keep the striking of the 

Digital Spoon acoustically quiet. The spoon player has the option of striking 

anywhere on the drum, or floor, triggering a audio/visual response, or striking on 

a linear force sensing resistor (FSR) on the EDholak Controller Box, which 

augments the audio/visual of the spoon strike and the audio/visual instances of all 

EDholak finger strikes. The Controller Box has a long FSR and a knob that the 

spoon player can use with his left hand to augment all sounds/graphic instances. 

All piezo triggers are converted to MIDI by the Alesis D425 8-channel 

Drum trigger box. The Controller Box is built using a Parallax Basic Stamp that 

converts all sensor data to MIDI. When two EDholaks are used in distinct 

locations, piezo generated MIDI signals are transferred using GIGAPOPR 

(custom built software created for Gigapop Ritual performance at NIME 2003) 

and then processed and merged together by an Alesis D4.  
                                                 

25 Available at: http://www.alesis.com/downloads/manuals/D4_Manual.pdf (January 2007) 
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All MIDI messages are funneled to the EDholak MIDI Control Software 

written for Windows. This software is used by the spoon player to control many 

parameters of the performance. A user can toggle between a networked 

performance (two EDholaks sending MIDI messages) or just one. The software is 

custom built to communicate with the Roland Handsonic26. The user can pre-

program patches that they wish to use in performance, in order of occurrence, and 

simply use the mouse to switch between them during a concert. The software also 

maps the Control Box sensors (Knob and FSR) to different MIDI Control 

Changes such as pitch, sweep, color, pan and volume, augmenting sounds of 

piezo MIDI signals going to the HandSonic. For example, the performers can start 

out by playing traditional Dholak sound samples while the spoon player selects a 

frequency sweep effect which morphs the samples to new expressive rhythmic 

sounds with the Controller Box and Digital Spoon. All MIDI messages from the 

software get transmitted to veldt to trigger visual events. 

 

6.4 veldt: Networked Visual Feedback 
Software 

The MIDI messages generated by EDholak drummers and spoon players are 

routed to a graphics computer running the veldt software, which synthesizes 

visuals in response to the patterns of drum triggers and other controller messages. 

veldt is an application that was designed from the ground up for the purpose of 

visual expression and performance. It receives MIDI messages from digital 

musical interfaces and maps them to a system of reactive events in order to 

generate live visuals, which are rendered in real time using the OpenGL2 graphics 

language. Mappings are flexible: sets of mappings may be arranged and modified 

during the design and rehearsal process, and triggered by control events during 

                                                 
26 Available at http://www.roland.com/products/en/HPD-15/ (October 2006) 
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different movements of a performance, and arbitrary text, images, video, and 

geometric models may be used as source material. 

We display a real-time composition of these media sources over geometric 

elements which are generated and modified according to the parameters of the 

current mapping. In addition to control events received from the performer, a 

physical simulation environment is incorporated to allow for a variety of 

secondary motion effects. This visually (and contextually) rich combination of 

source material over physically reactive structural elements allows for a response 

that is dynamically generated and artistically controlled. While the parameters 

that govern the overall response of the system to the drum controllers may be 

modified through cues such as MIDI program change messages, veldt allows an 

additional visual performer to control the finer aspects of the performance. 

 

   
Figure 38 – (Left) Layering text elements (Hindi) over several sparse structures using veldt. (Middle) 
Example screenshot of structure evolved from a drumming sequence generated by veldt. (Right) A 

more cohesive structure generated by a variation on the rule set. 

 

6.5 Summary 

The promise of interactive, multi-performer, networked performances, including 

audience participation, has been with us for quite a long time now. New research 

agendas have been born to technically enable these types of performances. Some 

projects have begun to look at the social aspects of this area as well. This chapter 

served to report about specific systems, a composition, and a performance. 

Moreover, we asked questions as to the motivations, reasons, necessity and 
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validity, both artistic and aesthetic, of investing the significant time and money in 

order to perform in more than one place at once. 

An interesting thing we discovered about networked audio/music is that it 

isn’t as technically difficult as it has been. The recent availability of Internet2, 

Ca2Net and other optically based gigabit networks has made creating systems 

such as SoundWire and Gigapop rather simple. A good programmer with a 

standard networking textbook could implement our system. Performance system 

tweaking required quite a bit of experimentation, but when it came down to the 

performance itself, it worked fine. If it didn’t work, the failure would have been 

because some astronomer decided to ftp a terabyte of data, or the dining hall 

closing at some university between Princeton and McGill prompting 200 students 

to suddenly rush back to their dorm rooms and start downloading movies using 

BitTorrent, or some similar reason. The promise of guaranteed quality standards 

on our networks went away with the demise of ATM (in the US and Canada), so 

it seems that we are ‘stuck’ with very high bandwidth, but no guarantees against 

porridge. 

One aspect of future systems, especially those based on our existing 

infrastructures, might include components of handshaking, where the multiple 

sites each announce and probe each other as to the available capabilities. In this 

way, networked audio might behave much as instant messaging, where each site 

gives and receives what it can technically to the performance. Some sites might 

only send gestural/sensor data, minimal audio, and very low quality (or no) video, 

and synthesize a local audio performance based on minimal data from the other 

sites. Others might be able to provide and consume full-bandwidth uncompressed 

video, audio, and sensor data. The aesthetic issues surrounding these sorts of 

inhomogeneous, highly asymmetric systems are quite interesting for future 

research and study. 
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6.5.1 Good things about networked music performance 

There are some good aspects to doing research in real-time networked sound, one 

of them being that sound is an excellent test-bed for testing network hardware and 

software. Latency and continuous quality of service is more important for sound 

than even for video. We can all tolerate a dropped or repeated video frame now 

and then, but not choppy audio. So in this way, sound and music are good for 

networking research and systems building, but this does not imply that 

networking is good for sound and music (except perhaps for funding 

opportunities). 

Areas that will clearly become useful, once systems become commonplace 

and affordable, include applications in pedagogy, such as remote instruction, 

rehearsal, etc. The ability to rehearse remotely is also interesting for professionals 

in some cases. There are many cases of unique instruments that cannot be moved 

easily. Opting to do a rehearsal remotely from a studio (or one’s home) rather 

than flying to the ‘gig’ and back, might be attractive, if the quality is good enough. 

Another aspect that Tanaka and others have mentioned is that the network and 

systems will breed new aesthetics, so new forms of art and interaction that don’t 

fit the traditional molds of performance, improvisatory, audience, etc. might 

emerge, giving networked performance its own unique space in art. 

 

6.5.2 Not so good things about networked music 
performance 

Technically, as we have stated, existing networks do not provide guarantees of 

quality (delay or bandwidth), and we are fairly certain that for some time to come, 

any such guarantees would be very expensive to have if available. 

Internet2/Ca2Net are expensive themselves, and available only to academics with 

lots of serious research to do. To think that the physics department will buy the 
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music department a new gigabit router, and pay to rewire the concert halls with 

fibre, seems like pipe dreaming. Thus, expense is still a serious issue for all but a 

few. 

One concern we have is the loss of the identity of the ‘band’ itself; that is, 

the loss of interaction of a finite number of players, each with their unique role, 

playing together on a single stage. Of course this is to be considered a ‘feature’ as 

well as a potential bug, but it is cause for concern, given the long history of 

musical performance in the more traditional molds. 

This tradition provides important grounding for audiences, who should 

also be considered in the future of new music performance. Contemporary 

composers and musicians have historically inflicted quite a bit of grief on their 

audiences [6]. In this tradition, we suppose that having a robot playing an 

instrument on stage in a concert location, along with grainy video of human 

players in a remote location, could be amusing or even aesthetically pleasing. But 

once the novelty has worn off, the music and performance must stand on its own. 

Related to this is the loss of society within the ‘band’ - that is, the 

interactions that go on between band members, both on and off stage. Waiting 

backstage to go on, and important aspects of socialization after a performance are 

not the same over a network. Being able to go out for a drink in Bombay after a 

performance can be more important and memorable than the actual performance 

itself. And, that drink and performance in Bombay can make the long airplane 

flight worth it as well. 

 

6.5.3 A dream worth dreaming 

Networked Media is a dream worth dreaming. The work completed by researchers 

so far comprises steps in the right direction on a path to a very uncertain 

destination. GIGAPOPR, the EDholak, and veldt are small pieces of a much 
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bigger puzzle. Applications must be constructed, and allowed to evolve naturally, 

that can take advantage of the ‘sound without space’.  

Someday, musicians like Ustad Ashish Khan, Ustad Shahid Parvez or 

Ustad Zakir Hussain might be faced with a common decision of whether to sit at 

home in their fuzzy pajamas and play concerts with others, or to travel to the site 

of the performance. The author and his collaborators wonder if networked 

performances will be granted an artistic status as legitimate as more traditional 

musical endeavors. 
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Chapter 

7 
7             

The Electronic Sitar 
What can you do with sensors on a Sitar? 

 

itar is Saraswati’s (the Hindu Goddess of Music) 19-stringed, gourd shelled, 

traditional North Indian instrument. Its bulbous gourd (shown in Figure 39), cut 

flat on the top, is joined to a long-necked, hollowed, concave stem that stretches 

three feet long and three inches wide. The typical sitar contains seven strings on the upper 

bridge, and twelve sympathetic strings below, all tuned by tuning pegs. The upper strings 

include rhythm and drone strings, known as chikari. Melodies, which are primarily 

performed on one of the upper-most strings, induce sympathetic resonant vibrations in 

the corresponding sympathetic strings below. The sitar can have up to 22 moveable frets, 

tuned to the notes of a Raga (the melodic mode, scale, order, and rules of a particular 

piece of Indian classical music) [112, 184]. The sitar is a very sophisticated and subtle 

instrument, that can create vocal effects with incredible depths of feeling, making it a 

challenging digital controller to create.  

S

 
Figure 39 - A traditional Sitar. 
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The remainder of this chapter will present: 

• The evolution of the technology of the sitar from its origins until the present day. 

• The traditional playing style of the sitar, on which the controller is modeled.   

• The creation of a real-time ESitar controller, using force sensors, accelerometers and 

resistor networks. 

• The creation of a real-time graphical feedback system that reacts to the sitar controller. 

7.1 Evolution of the Sitar  

The precursor of the sitar is known as the vina, of the lute family of instruments, which is 

referenced in Vedic writings as early as the first millennium B.C. Figure 40 (a) shows an 

early version of the stick zither vina, from the 6th and 7th century A.D. From this picture it 

is evident that the stick zither did not have frets, which ancient sculptures suggest evolved 

in the 10th and 11th Century A.D [7]. Figure 40 (b) shows a primitive type of vina 

instrument whose neck is made out of bamboo [157].  

 
                (a)                            (b)               (c)               (d) 

Figure 40 - (a) A stick zither vina [7], (b) A vina made of bamboo [157], (c) A sehtar [157], (d) A 7-stringed sitar 
[157]. 

 

There exist several differing historical accounts of the sitar’s evolution. Some 

sources claim the instrument descended directly from the vina as performers and builders 

made small modifications over time as technology and tools evolved. Others claim the 

similarity between the Middle-Eastern tambur and the Persian sehtar, which traveled to 
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India during the Muslim occupation of India in 11th century. The name seems to have 

derived from the Persian sehtar (she - three, tar – strings) shown in Figure 40 (c). In the 

18th century, instrumentalist Amir Khusro is credited with adapting the name, as well as 

reversing the order of the strings, placing the main melody string to the far outside, thus 

making it easier for the performer to play with the instrument upright [7]. He also 

improved the sitar by making the frets movable (for fine tuning), by using string to tie the 

frets down [157].  

In the 18th century, after the innovation of creating a wider bridge, four more 

strings were added to the sitar, giving a total of seven strings (as seen in Figure 40 (d)). 

Other improvements include the introduction of metal frets and the mizrab, the pyramid-

shaped, wire plectrum. In the 19th century, the tarabdar style of sitar emerged, which had 

nine to twelve sympathetic strings (known as tarab) positioned under the frets, as 

depicted in Figure 39 [7].  

In 2003 I worked, with the help of an interdisciplinary team of collaborators, to 

bring the sitar into the modern era of computers, adding resistors, capacitors, force 

sensing resistors, microphones, and ethernet jacks to enhance the traditional technique 

with the use of a laptop. 

7.2 Traditional Sitar Technique  

It is important to understand the traditional playing style of the sitar to comprehend how 

our controller captures its hand gestures. In this section, we will define the different parts 

of the sitar, briefly explain how North Indians annotate melodic notes, and describe the 

basic technique of sitar playing. 

7.2.1 Construction of a Sitar 

The gourd section of the sitar is known as the tumba and plays the role of a resonating 

chamber. The flat piece of wood that lies on the front side of the tumba is known as the 

tabli. The long column that extends from the tumba is known as the dand (similar to the 

neck of a guitar), and is made out of the same material as the tabli. This part of the 
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instrument acts as a column resonator. Sometimes, a second tumba is put at the dand to 

increase resonance.  

The seven main upper strings run along the dand, above moveable, curved metal 

frets, over a bridge (jawari) made of ivory or deer horn and are tied together at the langot 

at the very bottom of the sitar. The sympathetic strings, or tarab strings, run below the 

frets and have their own separate bridge (ara), but are also tied together at the langot. All 

strings are made of steel, except for the second upper string (right next to the main 

melody string), which is made of copper.  

  

7.2.2 Sitar Playing Technique 

It should be noted that there are two main styles of sitar technique: Ustad Vilayat Khan’s 

system and Pandit Ravi Shankar’s system. The main differences between the styles are 

that Ustad Vilayat Khan performs melodies on the higher octaves, eliminating the lowest 

string from the instrument, whereas Pandit Ravi Shankar’s style has more range, and 

consequently melodies are performed in the lower octaves [7]. The ESitar is modeled on 

the Vilayat Khan system or gharana.  

A performer generally sits on the floor in a cross-legged fashion. Melodies are 

performed primarily on the outer main string, and occasionally on the copper string. The 

sitar player uses his left index finger and middle finger, as shown in Figure 41(a), to press 

the string to the fret for the desired swara. In general, a pair of frets are spaced a half-step 

apart, with the exception of a few that are spaced by a whole step (typically around Sa 

and Pa – See Appendix A for a more detailed explination). The frets are elliptically 

curved so the string can be pulled downward, to bend to a higher note. This is how a 

performer incorporates the use of shruti (microtones). 

On the right index finger, a sitar player wears a ring like plectrum, known as a 

mizrab, shown in Figure 41(b). The right hand thumb remains securely on the edge of the 

dand as shown on Figure 41(c), as the entire right hand gets pulled up and down over the 

main seven strings, letting the mizrab strum the desired melody. An upward stroke is 

known as Dha and a downward stroke is known as Ra.[7, 184] 
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(a)                                (b)                         (c) 

Figure 41 - Traditional Sitar Playing Technique. 
 

7.3 The MIDI Sitar Controllers  

With the goal of capturing a wide variety of gestural input data, the ESitar controller 

combines several different families of sensing technology and signal processing methods. 

Two ESitar’s were constructed: ESitar 1.0 in summer of 2003 and ESitar 2.0 in summer 

of 2006. The methods used in both will be described including microcontroller platforms, 

different sensors systems and algorithms.  

7.3.1 The Microcontroller 

7.3.1.1 Atmel 
The core of the ESitar 1.0’s sensing and communication systems is an Atmel27 AVR 

ATMega16 microcontroller. The microcontroller is exploited primarily for its several 

parallel on-board analog to digital converters [196].  As the various sensor inputs are 

digitized by the microcontroller we do some pre-processing of the resulting signals to 

clean them up and/or classify them before forwarding them on to the host computer via 

MIDI. 

The Atmel is encased in a controller box as seen in Figure 42, with three switches, 

shaft encoders, and potentiometers used to trigger events, toggle between modes, and fine 

tune settings. The box also has an LCD to display controller data and settings to the 

                                                 
27 http://www.atmel.com/ (January 2007) 
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performer, enabling him/her to be completely detached from the laptops running sound 

and graphic simulations. The sitar and headset are each connected to the main control box 

using ethernet-type patch cables. These cables provide a clean and robust interconnection 

over which the analog sensor signals are sent to the control hardware. 

7.3.1.2 PIC  
The new ESitar 2.0 made a platform change from the Atmel to the PIC28 microcontroller, 

based on the mentoring of Eric Singer, Director of League of Electronic Music Urban 

Robots (LEMUR) in Brooklyn, New York. A major improvement was encasing the 

microchip, power regulation, sensor conditioning circuits, and MIDI out device in a box 

that fits behind the tuning pegs on the sitar itself. This reduces the number of wires, 

equipment, and complication needed for each performance. This box also has two 

potentiometers, six momentary buttons, and four push buttons for triggering and setting 

musical parameters. 

 
Figure 42 – Atmel Controller Box Encasement of ESitar 1.0 (left, middle). PIC Controller Box Encasement on 

ESitar 2.0 (right) 

 

7.3.2 Sitar Construction Alterations 

Initial experiments on the first ESitar were administered on a Vilayat Khan style sitar. 

The upgraded ESitar 2.0 was designed using new methods and theory obtained from 

three years of experience of touring and performing. The first step was to find a sitar 

maker in India to custom design an instrument with modifications to help encase the 

electronics. One major change to the traditional sitar was the move to worm-gear tuning 

                                                 
28 http://www.microchip.com/ (January 2007) 
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pegs for the six main strings. This allows the sitar to remain in tune through all the 

intense bending during performance, and makes the instrument more accessible to 

Western music students. A second tumba (gourd) was also created to encase a speaker to 

allow for digital sound to resonate through the instrument as well as serve as a monitor 

for the performer. The bridge, traditionally made of ivory, and then deer bone was 

upgraded to black ebony wood from Africa, which generates an impressively clear sound 

and requires less maintenance. The frets themselves were pre-drilled to allow easy 

installation of the resistor network described in detail below.     
 

7.3.3 Gesture Capturing 

The controller captures gesture data including the depressed fret number, pluck time, 

thumb pressure, 3 axes of the performer’s head tilt, and 3 axes of the sitar’s tilt. 

7.3.3.1 Fret Detection 
The currently played fret is deduced using an exponentially distributed set of resistors 

which form a network interconnecting in series each of the frets on the ESitar (pictured in 

Figure 43).  When the fingers of the left hand depress the string to touch a fret (as shown 

in Figure 41(a)), current flows through the string and the segment of the resistor network 

between the bottom and the played fret. The voltage drop across the in-circuit segment of 

the resistor network is digitized by the microcontroller. Using a lookup table it maps that 

value to a corresponding fret number and sends it out as a MIDI message. This design is 

inspired by Keith McMillan’s Zeta Mirror 6 MIDI Guitar [185].  

The ESitar 2.0 used a modified resistor network for fret detection based on more 

experimentation. Military grade resistors at 1% tolerance were used in this new version 

for more accurate results. Soldering the resistors to the pre-drilled holes in the frets 

provided for a more reliable connection that does not have to be re-soldered at every 

sound check! 

As mentioned above, the performer may pull the string downward, bending a 

pitch to a higher note (for example play a Pa from the Ga fret). To capture this additional 

information that is independent of the played fret, we fitted the instrument with a piezo 

pick-up whose output was fed into a pitch detector. For initial experiments, the pitch 
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detector was implemented in a pure data[136] external object using an auto-correlation 

based method [208]. The pitch detection is bounded below by the pitch of the currently 

played fret and allows a range of eight semi-tones above. Further evolution of this 

concept using Marsyas is described in more detail in Chapter 12.   

 
Figure 43 - The network of resistors on the frets of the ESitar 1.0 (left, middle). The ESitar 2.0 full body view 

(right).  

 

7.3.3.2 Mizrab Pluck Direction  
We are able to deduce the direction of a mizrab stroke using a force sensing resistor 

(FSR), which is placed directly under the right hand thumb, as shown in Figure 44. As 

mentioned before, the thumb never moves from this position while playing. However, the 

applied force varies based on mizrab stroke direction. A Dha stroke (upward stroke) 

produces more pressure on the thumb than a Ra stroke (downward stroke). We send a 

continuous stream of data from the FSR via MIDI, because this data is rhythmic in time 

and can be used compositionally for more then just deducing pluck direction. A force 

sensing resistor used to obtain thumb pressure proves to be useful in obtaining rhythmic 

data from the performer as will be explored in Chapter 10. 
 

  
Figure 44 - FSR sensor used to measure thumb pressure on ESitar 1.0 (left) and ESitar 2.0 (right). 
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7.3.3.3 Mizrab Pluck Time 
Pluck time is derived using two condenser microphones placed on a third bridge above 

the ara (shown in Figure 45). The microphones are located directly under the main 

melody string and the copper string. The signals from the microphones are passed 

through an analog envelope detector to extract the pluck time. We also use these 

microphones to determine on which string the melody is being played. If the melody is 

being played on the copper string (which is very rare), we can safely assume that the 

main melody string is not being played. The microcontroller sends a MIDI message when 

a pluck occurs, embedding the information for the string that was plucked. 

 
Figure 45 - Gesture capturing sensors at base of ESitar 1.0. 

 

7.3.3.4 3-axes Sitar Tilt 
In the ESitar 2.0, there is a 3-axis accelerometer embedded in the controller box at the top 

of the neck, to capture ancillary sitar movement, as well as serve as yet another means to 

control synthesis and audio effect parameters. This sensor can be used to derive data for 

performer’s posture with their instrument, as well as intricacies about playing technique 

such as jerk detection to help evaluate the beginning and end of melodic phrasing.  

7.3.3.5 3-Axes Performers Head Tilt 
An accelerometer is attached to a headset (as shown in Figure 46) in order to obtain 3-

axes of head tilt information, on the ESitar 1.0. We see the head as an easy way to control 
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and trigger different events in the performance [113]. We send continuous head data out 

via MIDI messages. The headset would be a useful addition to almost any controller as a 

replacement for foot pedals, buttons, or knobs. It is particularly useful in this system as a 

sitar player’s hands are always busy, and cannot use his/her feet due to the seated posture. 

This idea inspired Chapter 8 and the system evolved to attaching wireless acceleration 

sensors called WISPs to various parts of the performer’s body.  

 
Figure 46 - Headset with accelerometer chip. 

 

7.4 Graphic Feedback 

Visualization of the ESitar performance were rendered again using veldt. Visualizations 

were modeled on the traditional form of melodic notation for sitar. As the player 

performs, the incoming note/velocity pairs were read from the MIDI signal to render a 

stream of swara (See Appendix A for more information), which are arranged in a helix as 

if they are printed on spinning drum of paper (shown in Figure 47 (left)). A discrete 

rhythm detection algorithm [48] was used over a recent history of notes played to 

estimate a rough beat-per-minute value, which modulates the speed at which the drum 

rotates so that one measure is displayed per rotation of the drum. Notes played with 

greater intensity are rendered in a larger, bolder style, emphasizing them within the 

overall display. Rhythmic patterns are reflected visually as symmetries around the drum. 
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Additional signals are measured in the performance to broaden the player’s ability to 

change the scene. Signals received from two of the three axes from the tilt accelerometers 

on the headset are monitored, as well as the pressure measured from the thumb of the 

plucking hand, in order to pick up both continuous, low frequency measurements and 

additional rhythmic cues. The accelerometer values are used to parameterize the blending 

of several video streams over geometry in background of the video, in correlation with 

the movement through parameter spaces in our audio synthesis model. The thumb 

pressure provides a frequent, pulsing measurement in coordination with the plucks of the 

ESitar, and is used to control the scrubbing of short animation clips - in Figure 47 (right), 

those of a flower opening and closing. 

There are certainly a wide range of mappings that could be conceived of with the 

new range of the measurements that are received from the ESitar. In a pedagogical 

setting, a pre-recorded reel of swara could be used as a score against which a student’s 

accuracy could be measured visually, while also drawing their attention to more subtle 

aspects of their performance. 

 
 

 
Figure 47 – (left) Roll of swara rendered over video stream. (right) Animation scrubbing from thumb pressure. 

7.5 Summary 

This chapter has presented a real-time device for sitar performance. The sitar controller 

captures gestural data from a performer, and uses it to manipulate sounds and visuals. A 

performer can now use a laptop with a sitar in order to create a multimedia experience for 
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a live audience, using traditional Indian classical sitar technique. Performance based 

visual feedback provides another means of expression for the performer, as well as a 

pedagogical tool. As will be shown in the later chapters of this dissertation, the ESitar 

serves as a powerful tool towards machine automated transcription of Indian Classical 

music. 
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Chapter 

8 
8  

Wearable Sensors   
Capturing data from sensors on the Human Body 

 

he motion of the human body is a rich source of information, containing 

intricacies of musical performance which can aid in obtaining knowledge about 

intention and emotion through human interaction with an instrument. Proper 

posture is also important in music performance for musician sustainability and virtuosity. 

Building systems that could aid as pedagogical tools for training with correct posture is 

useful for beginners and even masters.   

T

This chapter explores a variety of techniques for obtaining data from a performing 

artist by placing sensors on the human body. The sensor data is used for a variety of 

applications including sonification of body gestures for analysis, real-time control of 

synthesis and audio effect parameters, and posture feedback systems.    

The first section describes experiments using a motion capture system. The 

second describes an evolution to using a wearable sensor package to obtain acceleration 

data. The third section describes yet another evolution to a wireless sensor package 

system that obtains orientation data. Experiments with Indian classical performers are 

included throughout the chapter.      
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8.1 Motion Capture for Musical Analysis 

This section describes experiments using a motion capture system to help understand 

some of the intricacies of human body motion during musical performance. This research 

has been inspired by the work of Marcelo Wanderly at McGill University in Montreal, 

Canada, who uses motion capture systems to study three main factors that influence 

performance: (1) The instrument’s constraints on the body, (2) the characteristics of the 

performance (e.g. rhythm, articulation, tempo, etc.) and (3) the interpretive momentary 

choices of the performer [187, 188]. The same team did further research to analyze the 

production and reproducibility of the performer’s ancillary body movements [129]. 

The goal of this work is to build the necessary infrastructure to study the use of 

sonification for understanding human motion in a musical context. In order to achieve 

this, VICON29, a commercial vision based motion capturing system was interfaced with 

various sound producing languages and frameworks. Sonification of human motion can 

yield results that are not observable by vision alone. Perception of periodicity, regularity, 

and speed of motion are a few of the attributes that are easier to observe with the aid of 

sound.  

Although the proposed infrastructure has been applied to many areas of research, 

the goals relating to this dissertation include studying how a musician’s posture and 

gestural movements during performance affect the sound produced as well as the 

emotional content (See Chapter 14) of the performer [87].  

 

8.1.1 VICON Motion Capture System 

The Vicon Motion Capture System is designed to track human or other movement in a 

room-size space. Spheres covered with reflective tape, known as markers, are placed as 

visual reference points on different parts of the human body. The VICON system makes 

use of six cameras and is designed to track and reconstruct these markers in three-

dimensional space. When a marker is seen by one of the cameras, it will appear in the 

camera’s view as a series of highly illuminated pixels in comparison to the background. 

                                                 
29 http://www.vicon.com (Available January 2005) 
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During capture the coordinates of all the markers in each camera’s view are stored in a 

data-station. The VICON system then links together the correct positions of each marker 

to form continuous trajectories, which represent the paths that each marker has taken 

throughout the capture and thus how the subject has moved over time. At least three of 

the cameras must view a marker for the point to be captured. Therefore, interpolation 

algorithms are applied in order to obtain continuous signals [198]. The VICON system 

measured the trajectories of each subject’s movement in 3D space at a sampling rate of 

120 Hz; However newer systems have much higher sample rates (1-2 kHz) for more 

precise data.  

8.1.1.1 Data Collection  
After motion capture trials are run using the VICON system, all data is labeled and 

interpolation algorithms are run to obtain continuous streams of marker positions. Next, 

each trial is exported to a text file. The first line of the text file contains the label names 

of the markers, separated by commas. Each line is time stamped and represents the x-, y-, 

z-, coordinates of all the markers for that particular time instance. All our experiments 

were captured at a 120 Hz sampling rate.  

For this research, the set of data collected was on performers playing traditional 

instruments, namely the tabla and the violin. Tabla performance recordings were of 

traditional Tin Taal Theka excerpts of 16-beat cycles. As shown in Figure 48 (left), a full 

model of the right hand was captured using a custom built VICON plug-in to capture 28 

marker points. The violin performances were of simple songs in moderate tempo in a 

major scale. As shown in Figure 48 (right), markers were placed to capture upper body 

movements including the head, arms, and upper clavicle.     

    
Figure 48 – (left) Screenshot of data capturing process for tabla performance. (right) Screenshot of data 

capturing process for violin performance. 
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8.1.2 Sonification Experiments 

8.1.2.1 Framework  
This section describes experiments on sonifying data obtained using the VICON motion 

capture system. The main goal is to build the necessary infrastructure in order to be able 

to map motion parameters of the human body to sound. For sonification the following 

three software frameworks were used: Marsyas30 [177], traditionally used for music 

information retrieval with audio analysis and synthesis, ChucK31 [189], an on-the-fly 

real-time synthesis language, and Synthesis Toolkit32  [36], a toolkit for sound synthesis 

that includes many physical models of instruments and sounds. 

8.1.2.2 Importing Data   
Once the data is collected, the files are imported into the desired synthesis language. For 

both Marsyas and ChucK, custom ViconFileSource classes were designed to read the 

marker sets. The motion capture data and derived features can be used to control 

parameters of different synthesis algorithms and digital audio effects for sonification 

purposes. Both languages were modular enough to allow for two streams of data, (in this 

case, Vicon and audio) to run at two different sampling rates.  

8.1.2.3 Sonification Algorithms  
Using Marsyas for audio analysis, feature extraction and classification, and STK for 

synthesis, and finally ChucK, a high-level language for rapid experimentation, it is 

possible to implement a breadth of sonification algorithms (see Figure 49). 

                                                 
30 http://opihi.cs.uvic.ca/Marsyas/ 
31 http://chuck.cs.princeton.edu/ 
32 http://ccrma.stanford.edu/software/stk/ 
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Figure 49 - Vicon Sonification Framework. 

 

Using Marsyas, a simple gesture based additive synthesis module was designed, 

which took n different makers and used them to control the frequency of n sinusoids. The 

code sketch in Figure 50 shows how the 3 markers of the x,y,z wrist position can be used 

to control 3 sinusoidal oscillators in Marsyas. Another method was to use the gesture data 

to control the gain values of the n different wavetables. In order for this to work, each 

marker’s data stream had to be normalized.  
01# while (viconNet->getctrl("bool/notEmpty")) 
02#    { 
03#         // read marker data from file 
04#         viconNet->process(in,out); 
05# 
06#         // control frequencies of sine oscillators 
07#    pnet->updctrl("real/frequency1", out(1,0)); 
08#     pnet->updctrl("real/frequency2", out(2,0)); 
09#    pnet->updctrl("real/frequency3", out(3,0));    
10#    // play the sound 
11#         pnet->tick() 
12#    } 

Figure 50 - The following code sketch shows has the 3 markers of the x,y,z wrist Position can be used to control 3 
sinusoidal oscillators in Marsyas. 

 

Another technique that was easy to implement in Marsyas was gesture-based FM 

synthesis. FM synthesis is a method of creating musically interesting sounds by 

repetitively changing the basic frequency of a source. We set up a system to have the 

modulation index and source frequency change with data from the marker streams.  
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An example of motion controlled digital audio effect implemented in Marsyas is a 

real-time Phase Vocoder [57]. A Phase Vocoder is an algorithm for independent control 

of time stretching and pitch shifting. Thus the marker data streams can control the speed 

of the audio playback and the pitch independently of each other.   

Using STK, we were able to control physical models of instruments [36]. This 

way we could use marker streams to control different parameters (such as tremolo rate, 

hardness, direction, vibrato, reed aperture, etc) on instruments including flute, clarinet, 

mandolin, shakers, and even sitar.  

ChucK provides the ability to (1) precisely control the timing of a sonification 

algorithm and (2) easily factor many complex sonification algorithms and digital audio 

effects into concurrent modules that are clearer (and easier) to implement and reason 

about. 
 

01#    // read single column of data from input 
02#    ColumnReader r( input, column ); 
03#    float v; 
04# 
05#    // time-loop 
06#    while( r.more() ) 
07#    { 
08#        // read the next value 
09#        r.nextValue() => v; 
10#        // do stuff with v 
11#        ... 
12#        // advance time as desired 
13#        T::ms => now; 
14#    } 

Figure 51 - Example template ChucK code for sonification of body motion data. 

 

In this example (Figure 51), we show a simple template used for sonifying multi-

valued streams of marker data by factoring into concurrent processes - one process for 

each value stream (column).  The template first creates a reader for a specific column 

(line 2).  In the loop (lines 6-14), the next value is read (line 9) and used for sonification 

(to control synthesis, etc., line 11).  Finally, time is advanced by any user-definable 

amount (line 13). 

This template can be instantiated one or more times as concurrent processes, each 

with a potentially different column number, time advancement pattern, and synthesis 

algorithm.  Together, they sonify the entire dataset, or any subset thereof.  For example, 

one process uses a granular model to sonify column 2, and another uses a plucked string 

model to sonify column 5. One of the properties of ChucK is that all such processes, 
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while independent, are guaranteed to be synchronized with sample-precision. 

Furthermore, it is possible to add/remove/replace a process on-the-fly, without restarting 

the system.  

8.1.2.4 Experiments with Musical Instruments 
The goal in this area of study is to sonify events of the gestures of performers playing 

different instruments. There are numerous areas of interest that can be explored using this 

framework.  

First, we are interested in finding which markers contain musical information. 

This can be tested using STK’s physical models of the instrument, in order to try and 

reproduce a performance, using the marker’s data to control parameters of appropriate 

physical models. Our goal is to find how few markers can be used in order to reconstruct 

a musical phrase. Another interesting question is to observe interchanging traditional 

mappings (e.g. map plucking hand to bowing, and bowing hand to plucking) to obtain 

new types of sound.   

Another area of interest is to observe ancillary gestures during performance (e.g. 

how the head moves during a violin performance). Specifically, the following questions 

are asked: When a performer plays the same composition, do the ancillary body gestures 

move in the same way? What is the minimum number of markers that need to be the 

same in order for the same performance to be played? What type of information do the 

ancillary markers obtain? Answering these questions using the proposed framework 

allows observations of subtle differences in movements that are difficult to see using only 

visual feedback.  

As seen in Figure 48, initial experiments are based on a tabla and violin 

performance. The challenge with the tabla is the precise timing of fingers. Thus we use a 

detailed model of the hand, as described above, in order to preserve the performance. 

Challenges with the violin include timing like the tabla, but also the added dimension of 

melody and the associated emotions expressed as movement.  
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8.2 The KiOm Wearable Sensor 

The VICON Motion Capture System provides an immense amount of data for analysis 

and research. However, the system used is not real-time (although real-time versions of 

hardware/software commercially exist). VICON system and other motion capture 

systems are very expensive, and cumbersome if not impossible to move on stage for 

performance. Also, the markers which are stuck on the musicians tend to fall off and 

lighting conditions must meet certain requirements for ideal capture. These drawbacks 

have influenced the invention of the KiOm [88] wearable sensor.  

This section describes the use of wearable sensor technology to control 

parameters of audio effects for real-time musical signal processing. Traditional 

instrument performance techniques are preserved while the system modifies the resulting 

sound based upon the movements of the performer. Gesture data from a performing artist 

is captured using three-axis accelerometer packages that is converted to MIDI (musical 

instrument digital interface) messages using microcontroller technology. In the literature 

presented, sensors are used to drive synthesis algorithms directly, completely separating 

the sound source from the gesture. Our paradigm, and the key novelty of this work, is to 

keep traditional instrument performance technique, modifying the amplified acoustic 

signal with sensor data controlling a number of audio effect parameters.   

A similar paradigm is that of the hyperinstrument [85, 103] where an acoustic 

instrument is augmented with sensors. In our approach, any performer can wear a low-

cost sensor while keeping the acoustic instrument unmodified, allowing a more accessible 

and flexible system.  

8.2.1 Wearable Sensor Design 

The design of the KiOm (see Figure 52), is described in this section. A Kionix KXM52-

105033 three-axis accelerometer is used. The three streams of analog gesture data from the 

sensor is read by the internal ADC of the Microchip PIC 18F232034. These streams are 

converted to MIDI messages for use with most musical hardware/synthesizers.  

                                                 
33 http://www.kionix.com/ (February 2005) 
34 http://www.microchip.com/ (February 2005) 
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Figure 52 - The KiOm Circuit Boards and Encasement. 

 

A microphone capturing the acoustic signal of the instrument is also part of the 

system. This way, synchronized gesture data and audio signals are captured in real-time 

by the system for signal processing. Figure 53 shows a diagram of our system.  

 
Figure 53 - Diagram of synchronized audio and gesture capture system. 

 

8.2.2 Audio Signal Processing 

This section will present how ChucK is used to for audio signal processing using both 

streams of data. The different synthesis algorithms that are used for experimentation are 

also described.    

8.2.2.1 Synthesis Algorithms 
 
For the initial experiments, a number of traditional synthesis algorithms and digital audio 

effect processors were implemented.  

The first algorithm was a FIR comb filter. A FIR comb filter adds a delayed 

version of the input signal with its present input signal. There are two parameters to tune 
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the filter: T that is the amount of delay, and the g the amplitude of the delayed signal. The 

difference equation is given by [208]: 

M
s

gzzH

fTM
Mngxnxny

−+=

=
−+=

1)(

/
)()()(

 

The acceleration data from the wearable sensor can be used to control values of T and g 

on the acoustic signal x(n).  

Vibrato [208] is an algorithm which periodically varies the time delay at a low 

rate to produce a periodic pitch modulation. Typical values are 5 to 10 ms for average 

delay time, and 5 to 14 Hz for the low-frequency oscillator, parameters which two axes of 

acceleration from the KiOm control.  

When a comb filter is combined with a modulating delayline, flanger, chorus, 

slapback and echo effects are produced. If an FIR comb filter and a delay between 10 and 

25 ms are used, a doubling effect known as slapback occurs. If an FIR filter with a delay 

greater then 50 ms is used, an echo is heard. If the delay time is continuously varied 

between 0 and 15 ms, an effect known as flanging occurs. If the delay line is varied 

sporadically between 10 and 25 ms, a chorus effect occurs [208]. The KiOm is used to 

control parameters to all these different algorithms.  
 

8.2.3 Case Studies 

This section describes different experiments with a variety of instruments to show the 

versatility and evolution of our system. The KiOm is performed with a variety of 

instruments both Indian classical and Western.  

Figure 54 shows our first experiments with a drum set performance. The wearable 

prototype sensor was placed on the hands of the drummer who was told to play with 

traditional technique. Because of the rhythmic nature and movement of the drummer’s 

hands during the performance, using the gesture-captured data to affect the sounds of the 

drums was successful. Our favorite algorithms were controlling parameters of the comb 

filters and the flanger. Similar results were obtained by placing the sensors on the feet of 

the drummer while playing bass drum.  
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Our next experiment was with hand drumming on the traditional North Indian 

Tabla as seen on the left of Figure 55. Again, a traditional performance obtained rhythmic 

gesture capture data which musically combined as parameters to the various synthesis 

algorithms. Another method was to place the sensor on the head of a performer, as shown 

on the right of Figure 55. Here it is attached to a headset (headphones with boom 

microphone) so that the Indian vocalist or any other performer can sing and control the 

DSP parameters with head motions, thus leaving the hands and feet free to gesture to the 

audience. Another method is for the performer to play a traditional instrument wearing 

the headset, replacing the need for foot-pedals, knobs and buttons to control synthesis 

parameters. An example where this might be useful is during Sitar performance, in which 

the musician traditionally sits on the floor, and whose hands are occupied, leaving only 

the head to control parameterization. This was the initial experiment administered 

described in [85], which initiated this research.  

 
Figure 54 – Wearable sensors used for a drum set performance. 

 

 
Figure 55 - Wearable sensor used for a Tabla performance (left). Set up for using on head of performer (right). 
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Figure 56 - Wearable sensor used to capture scratching gesture of turntablist (left). Wearable sensor used in 

conjunction with live Computer Music Performance using ChucK (right).. 
 
 

More experiments include performances with a turntablist who was scratching 

vinyl records with the KiOm placed on the hand (Figure 56 (left)), similar to the drum 

experiments. Experiments on a computer music performance were administered, in which 

a performer used a keyboard and mouse of a laptop, with a KiOm to capture gestures to 

control parameters of synthesis algorithms as shown on the right of Figure 56.  

8.3 The WISP Wearable Sensors 

The Wireless Inertial Sensor Package (WISP) [170], designed by Bernie Till and the 

Assistive Technology Team at University of Victoria, is a miniature Inertial 

Measurement Unit (IMU) specifically designed for the task of capturing human body 

movements. It can equally well be used to measure the spatial orientation of any kind of 

object to which it may be attached. Thus the data from the WISP provides an intuitive 

method to gather data from a musical performer. The KiOm’s have the disadvantage of 

being heavy and having wires that connect to the computer, certainly putting constraints 

on a musician. With the wireless WISP, the performer is free to move within a radius of 

about 50m with no other restrictions imposed by the technology such as weight or wiring.   
 

8.3.1 Hardware Design 

The WISP is a highly integrated IMU with on-board DSP and radio communication 

resources. It consists of a triaxial differential capacitance accelerometer, a triaxial 

magnetoresistive bridge magnetometer, a pair of biaxial vibrating mass coriolis-type rate 

gyros, and a NTC thermistor. This permits temperature-compensated measurements of 
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linear acceleration, orientation, and angular velocity. The first generation prototype of 

WISP, shown in Figure 57 next to a Canadian two-dollar coin, uses a 900 MHz 

transceiver with a 50Kb/s data rate. With a volume of less than 13cm
3 
and a mass of less 

than 23g, including battery, the unit is about the size of a largish wrist watch. The WISP 

can operate for over 17 hours on a single 3.6V rechargeable Lithium cell, which accounts 

for over 50% of the volume and over 75% of the mass of the unit.  

The fundamental difference between the WISP and comparable commercial 

products is that the WISP is completely untethered (the unit is wireless and rechargeable) 

in addition to being far less expensive. All comparable commercial products cost 

thousands of dollars per node, require an external power supply, and are wired. A 

wireless communication option is available in most cases, but as a separate box which the 

sensor nodes plug into. As can be seen in Figure 57, the small size and flat form-factor 

make it ideal for unobtrusive, live and on-stage, real-time motion capture. 

 
Figure 57 - Wireless Inertial Sensor Package (WISP)  

 

8.3.2 The Data  

The windows-based WISP application sends out the roll (rotation about x), pitch (rotation 

about y) and yaw (rotation about z) angles from the sensing unit over Open Sound 

Control (OSC) [199]. These angles are commonly used in aerospace literature to describe, 

for example, the orientation of an aircraft [110]. The data is read into MAX/MSP using 

the standard OSC reading objects. By subtracting successive samples of each orientation 
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angle, measures of angular velocity are obtained in addition to the raw orientation angles. 

With three angles and three angular velocities we have a total of six control parameters 

for each WISP. The data are then conditioned and transformed into MIDI control change 

messages which are sent to an audio synthesis engine. 

The data from the WISP are received by MAX/MSP via the OSC protocol and 

converted into MIDI messages to communicate with a synthesis engine. The WISP is 

used to control audio and visual aspects of a live performance which, in turn, feed back to 

influence the emotional and physiological state of the performer allowing the 

performance to evolve in a natural self-organizing dynamic.  

 

8.3.3 Real-Time Posture Feedback  

Orientation data of the WISP, communicated via the OSC protocol [170],  was used to 

give feedback to the tabla student to help them maintain correct right arm posture during 

playing. In the beginner stages of tabla, body posture, particularly orientation of the right 

arm is critical to the correct development of a student. Boundaries were imposed on the 

three axes of orientation given by the WISP. When any of the boundaries were exceeded 

by the student an axis specific sound would alert the student of incorrect posture. 

Initial work also includes an animated human body model instrumented by seven 

WISPs attached to a student’s upper body at key skeletal articulation points. Since each 

WISP is small and wireless this sort of whole-body gesture analysis is easy to implement 

and non-invasive for the student. A multi-WISP system will provide a much more 

detailed analysis of posture enabling the system to teach a student to maintain correct 

posture of the spine, neck, head, and left arm as well as the right arm. Of course this 

system can be extended beyond the tabla into any sort of posture critical applications. 

8.4 Summary  

This chapter showed comparisons between three different methods of capturing gestures 

by placing sensors on the human body of a North Indian classical performer. In each case 

the captured data were used in different applications including sonification, audio effect 
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control, real-time tempo tracking and performer/student posture training. Refer to Figure 

58 for a summary of advantages and disadvantages of each method. Overall, our 

experiments show that gesture data from a musician as well as audio data is paramount in 

the evolution of musical signal processing. 
 

Device Advantages Disadvantages 

VICON 

Motion 

Capture 

* Rich Amounts of Data 

* No Electronics on Body 

 

* Expensive 

* Cumbersome for Stage 

* Markers fall off 

* Reflection Errors  

KiOm * Cheap 

* Accesible  

* MIDI Device Compatible 

* Electronics on Body 

* Wired 

* Acceleration data only 

WISP * Orientation data 

* Wireless 

* OSC Device Compatible 

* Expensive 

* Electronics on Body 

Figure 58 - Comparison of Acquisition  Methods
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9 
9     

The MahaDeviBot 
A Comparison of Solenoid-Based Strategies for Robotic 
Drumming 

 
 

echanical systems for musical expression have developed since the 

19th Century. Before the phonogram, player pianos and other 

automated devices were the only means of listening to compositions, 

without the presence of live musicians. The invention of audio recording tools 

eliminated the necessity and progression of these types of instruments. In modern 

times, with the invention of the microcontroller and inexpensive electronic 

actuators, mechanical music is being revisited by many scholars and artists.  

M

Musical robots have come at a time when tape pieces and laptop 

performances have left some in the computer music audiences wanting more 

interaction and physical movement from the performers [153]. The research in 

developing new interfaces for musical expression continues to bloom as the 

community is now beginning to focus on how actuators can be used to raise the 

bar even higher, creating new mediums for creative expression. Robotic systems 

can perform tasks not achievable by a human musician. The sound of a bell being 

struck on stage with its acoustic resonances with the concert hall can never be 

replaced by speakers, no matter how many directions they point. The use of 
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robotic systems as pedagogical implements is also proving to be significant. 

Indian classical students practice to a Tabla box with pre-recorded drum loops. 

The use of robotic strikers, performing real acoustic drums gives the students a 

more realistic paradigm for concentrated rehearsal.  

A number of different drumming robots have been designed in the 

academic and artistic communities as described in Chapter 3. The drumming 

robots presented have all been one of a kind proof of concept systems and there 

hasn’t been much work in qualitative comparative evaluation of different designs. 

Our goal in this chapter is to explore systems that can be used in the classroom to 

teach musical robotics. Therefore, we choose to focus on solenoid-based designs 

as hydraulic-based designs have prohibitive cost for classroom use. The designs 

presented are practical and can be replicated in a semester. The evaluation 

methods presented are important to inform composers and designers about 

strengths and limitations of different designs to guide composition decisions and 

performance constraints.  

The development of the MahaDeviBot as a paradigm for various types of 

solenoid-based robotic drumming is described. The MahaDeviBot serves as a 

mechanical musical instrument which extends North Indian musical performance 

scenarios, while serving as a pedagogical tool to keep time and help portray 

complex rhythmic cycles to novice performers in a way that no audio speakers 

can ever emulate. The first section of this chapter describes the design strategies 

for the MahaDeviBot, including five different methods for using solenoids for 

rhythmic events. Next, the experimental evaluation of speed and dynamic testing 

of the different design methods is presented. A summary and discussion of results 

conclude the chapter.  
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9.1 Design 

Different solenoid-based designs for robotic drumming are evaluated in the 

context of MahaDeviBot, a 12 armed robotic drummer that performs instruments 

from India including frame drums, bells, and shakers. Four different methods for 

solenoid-based drumming are described. A robotic head of MahaDeviBot is also 

described. Finally we present a piezo-based haptic feedback system for evaluation 

experiments and the machine’s awareness of its own parts.       

9.1.1 Arms 

There are four different designs proposed, and appropriately named by the 

inventor: Kapur Fingers, Singer Hammer, Trimpin Hammer and Trimpin BellHop 

are described.  

9.1.1.1 Kapur Fingers 
The Kapur Fingers involve modifications of a push solenoid. One issue with the 

off-the-shelf versions of the solenoids is that during use they click against 

themselves making lots of mechanical sound. A key goal for a successful music 

robotic system is to reduce the noise of its parts so it does not interfere with the 

desired musical sound. Thus the push solenoids were reconfigured to reduce noise. 

The shaft and inner tubing were buffed with a wire spinning mesh using a Dremel. 

Then protective foam was placed toward the top of the shaft to stop downward 

bounce clicking. Rubber grommets were attached in order to prevent upward 

bounce-back clicking. The grommets were also used to simulate the softness of 

the human skin when striking the drum as well as to protect the drum skin.  
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Figure 59 - Kapur Finger using a grommet and padding. 

 

9.1.1.2 Singer Hammer 
The Singer Hammer is a modified version of the Eric Singer’s ModBot [159]. The 

mechanism strikes a drum using a steel rod and ball. A pull solenoid is used to lift 

a block to which the rod is attached. A ball joint system was added to connect the 

solenoid to the bar for security and reliability of strokes. The trade-off was that it 

added some mechanical noise to the system. The MahaDeviBot has four Singer 

Hammers striking a variety of frame drums.  

       
Figure 60 - Singer Hammer with added ball-joint striking mechanism. 

9.1.1.3 Trimpin Hammer 
The Trimpin Hammer is a modified version of Trimpin’s variety of percussion 

instruments invented over the last 20 years [174].  Its key parts include female 

and male rod ends, and shaft collars. This is a very robust system which involves 
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using a lathe to tap the shaft of the solenoid so a male rod end can be secured. 

This is a mechanically quiet device, especially with the added plastic stopper to 

catch the hammer on the recoil. These devices are used to strike frame drums, 

gongs, and even bells as shown in Figure 62.   

      
Figure 61 - Trimpin Hammer modified to fit the MahaDeviBot schematic. 

 

  
Figure 62 - Trimpin Hammers use on MahaDeviBot. 

9.1.1.4 Trimpin BellHop 
The Trimpin BellHop is a modified version of technology designed for Trimpin’s 

ColoninPurple, where thirty such devices were used to perform modified 

xylophones suspended from the ceiling of a gallery. These are made by modifying 

a pull solenoid by extending the inner tubing so that the shaft can be flipped 

upside down and triggered to hop out of the front edge and strike a xylophone or 

Indian bell (as shown in Figure 64).  These, too, are mechanically quiet and robust.  
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Figure 63 - Trimpin BellHop outside shell tubing (left) and inside extended tubing (right). 

 

   
Figure 64 - Trimpin BellHops used on MahaDeviBot. 

 

9.1.2 Head 

The headpiece of the MahaDeviBot is a robotic head that can bounce up and down 

at a given tempo. This was made using a pull solenoid attached to a pipe. Two 

masks are attached to either side and the brain is visualized by recycled computer 

parts from ten-year old machines which have no use in our laboratories anymore. 

In performance with a human musician, the head serves as a visual feedback cue 

to inform the human of the machine-perceived tempo at a given instance in time.  
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Figure 65 - The bouncing head of MahaDeviBot. 

9.1.3 Haptic Feedback System 

A haptic feedback system was implemented using piezo sensors attached to the 

frame drums and other instruments. This was to infuse the system with machine 

“self awareness”, i.e. to know about the capabilities and limitations of its own 

implements. If the machine triggers a robotic drum strike and the piezo does not 

receive a signal, then it knows to increase the volume for the next strike. If it 

reaches its maximum volume ability and still no signal is received, then it knows 

that the mechanism is malfunctioning. This will trigger the machine to shut off 

and disable itself from further action during a performance to save power and 

reduce unnecessary mechanical noise. This feedback system is also used for the 

evaluation experiments described in the following section.  

9.2 Experimental Evaluation  

9.2.1 Speed Tests 

Speed tests were administered to each type of solenoid-based system using the 

ChucK [189] strongly-timed programming language. The frequency of successive 

strikes began at 1 Hz and was incremented by .01 Hz until it was observed that 
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the mechanism was malfunctioning. The maximum speeds obtained by each 

device are portrayed in Figure 66.  
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Figure 66 - Maximum speeds attainable by each robotic device. 

9.2.2 Dynamic Range Tests 

Dynamic range experimentation was administered by triggering robotic strikes 

with increasing strength using MIDI velocity messages ranging from 1 to 127. 

The piezo sensors placed on the drums measure the actual response for each 

dynamic level. Results are shown in Figure 67.   
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Figure 67 - Dynamic Range Testing Results. 

 

9.2.3 Discussion 

These experiments show that each design has different strengths and weaknesses. 

The Kapur Finger has moderately high speed capability reaching up to 14.28 Hz. 

However, it has limited dynamic range and cannot strike very loud. The Singer 

Hammer can strike very soft and very loud, but can only play as fast as 8.3 Hz. 

The Trimpin Hammer can roll at 18.18 Hz with only one finger, but does not have 

the dynamic capabilities seen in the Singer Hammer. The Trimpin Bellhop has the 

most linear dynamic response but is the slowest design.  

9.3 Summary 

This chapter described our methodology for designing a mechanical system to 

perform Indian Classical music using traditional folk instruments. Figure 68 

shows an evolution of the design from wooden frameworks with Kapur Finger’s 

striking a Bayan, to a 3-armed prototype system, to the complete 12-armed 

MahaDeviBot to-date. This chapter describes in detail the various design 
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strategies used to build the final version of the robotic Indian drummer. Even 

though some of the design tradeoffs were expected, the quantitative evaluation 

included provides more concrete and solid information. As an example of how 

these tradeoffs can influence robotic design for musical performance, the four 

designs are integrated into MahaDeviBot in the following ways: The Kapur 

Fingers are added to a drum with the Singer Hammer to allow large dynamic 

range and quick rolls from one frame drum. The Trimpin Hammer is used to 

perform drum rolls and is used for robotic Tabla performance. The Trimpin 

BellHop is used to strike bells and other instruments where volume is important 

and which will not be struck at high rates.  

     
Figure 68 - Evolution of MahaDeviBot from wooden frames to the sleek 12-armed percussion playing 

device. 

 

Future work includes making a completely automated framework in ChucK to 

evaluate robotic systems. We are also interested in designing mechanisms to 

allow the robot to strike at any x-, y- coordinate location. The next evolution of 

MahaDeviBot will include the use of other actuators including motors and gears. 

Robotics combined with Indian Classical music presents a new paradigm for 

extending traditional ideas with the use of computers. The pedagogical 

applications upgrade the present audio speaker systems used to teach rhythmic 

cycles to the state-of-the-art mechanical systems which a student can practice 

with for a more realistic and concentrated rehearsal. A solo melodic artist can now 
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tour the world with a robotic drummer to accompany if software is “intelligent” 

enough to keep the interest of the audience. The next five chapters discuss our 

pursuits in this direction.  
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Section IV 
 

Machine Musicianship  
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10 
10  

Tempo Tracking 
Experiments  

Where’s the beat? 

 

he “intelligence” of interactive multimedia systems of the future will rely 

on capturing data from humans using multimodal systems incorporating a 

variety of environmental sensors. Research on obtaining accurate 

perception about human action is crucial in building “intelligent” machine 

response. This chapter describes experiments testing the accuracy of machine 

perception in the context of music performance. The goal of this work is to 

develop an effective system for human-robot music interaction.  

T

Conducting these types of experiments in the realm of music is obviously 

challenging, but fascinating at the same time. This is facilitated by the fact that 

music is a language with traditional rules, which must be obeyed to constrain a 

machine’s response. Therefore the evaluation of successful algorithms by 

scientists and engineers is feasible. More importantly, it is possible to extend the 

number crunching into a cultural exhibition, building a system that contains a 

novel form of artistic expression, which can be used on stage. 

More specifically, this chapter describes a multimodal sensor capturing 

system for traditional sitar performance. As described in Chapter 7, sensors for 
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extracting performance information are placed on the instrument. In addition 

wearable sensors are placed on the human performer, as described in Chapter 8. A 

robotic drummer has been built to accompany the sitar player, as described in 

Chapter 9. In this research, we ask the question: How does one make a robot 

perform in tempo with the human sitar player?  

Analysis of accuracy of various methods of achieving this goal is 

presented. For each signal (sensors and audio) we extract onsets that are 

subsequently processed by Kalman filtering [17] for tempo tracking [89]. Late 

fusion of the tempo estimates is shown to be superior to using each signal 

individually. The final result is a real-time system with a robotic drummer 

changing tempo with the sitar performer in real-time.   

The goal of this chapter is to improve tempo tracking in human-machine 

interaction. Tempo is one of the most important elements of music performance 

and there has been extensive work in automatic tempo tracking on audio signals 

[63]. We extend this work by incorporating information from sensors in addition 

to the audio signal. Without effective real-time tempo tracking, human-machine 

performance has to rely on a fixed beat, making it sound dry and artificial. The 

area of machine musicianship is the computer music communities’ term for 

machine perception described in Chapter 4. Our system evolves the state-of-the-

art different as it involves a multimodal sensor design to obtain improved 

accuracy for machine perception.  

Section 10.1 presents the experimental procedure administered including 

details about the sensor capturing systems, wearable sensors and the robotic 

drummer.  Section 10.2 describes the results of the experiments influencing 

design decisions for the real-time system. Section 10.3 contains a summary of 

concluding remarks. 
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10.1 Method  

There are four major processing stages in our system. A block diagram of the 

system is shown in Figure 69. In the following subsection we describe each 

processing stage from left to right. In the acquisition stage performance 

information is collected using audio capture, two sensors on the instrument and a 

wearable sensor on the performer’s body. Onsets for each seperate signal are 

detected after some initial signal conditioning. The onsets are used as input to four 

Kalman filters used for tempo tracking. The estimated beat periods for each signal 

are finally fused to provide a single estimate of the tempo.  

 

 
Figure 69 - Multimodal Sensors for Sitar Performance Perception. 

 

10.1.1 Data Collection 

For our experiments we recorded a data set of a performer playing the ESitar with 

a WISP on the right hand. Audio files were captured at a sampling rate of 44100 

Hz. Thumb pressure and fret sensor data synchronized with audio analysis 

windows were recorded with Marsyas at a sampling rate of 44100/512 Hz using 

MIDI streams from the ESitar. Orientation data for the Open Sound Control (OSC) 

[199] streams of the WISP were also recorded.   
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While playing, the performer listened to a constant tempo metronome 

through headphones. 104 trials were recorded, with each trial lasting 30 seconds. 

Trials were evenly split into 80, 100, 120, and 140 BPM, using the metronome 

connected to the headphones. The performer would begin each trial by playing a 

scale at a quarter note tempo, and then a second time at double the tempo. The 

rest of the trial was an improvised session in tempo with the metronome. 

10.1.2 Onset Detection 

Onset detection algorithms were applied to the audio and sensor signals to gather 

periodicity information of the music performance.  As seen in Figure 69, the RMS 

energy of the audio signal and the sum of the WISP 3-axes Euler angles are 

calculated while the values of the thumb and fret sensor are used directly. A peak-

picking algorithm is applied to the derivatives of each signal to find onset 

locations. An adaptive peak-picking algorithm is applied on the WISP data to 

compensate for the large variability in wrist movement during performance. 

Since each sensor captures different aspects of the underlying rhythmic 

structure, the onset streams are not identical in onset locations and phase. 

However we can expect that the distance between successive onsets will 

frequently coincide with the underlying tempo period and its multiples. In order to 

detect this underlying tempo period we utilize a real-time Kalman filtering 

algorithm for each sequence of onsets transmitted as MIDI signals.  

10.1.3 Switching Kalman Filtering 

Real-time tempo tracking is performed using a probabilistic Particle Filter. The 

algorithm tests various hypotheses of the output of a switching Kalman Filter 

against noisy onset measurements providing an optimal estimate of the beat 

period and beat [20]. Noisy onset measurements, extracted from the various 

sensor streams, are used as input to a real-time implementation of the tempo 

tracking algorithm [89]. In order to model the onset sequence we use a linear 
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dynamical system as proposed in [20]. The state vector xk describing the system at 

a certain moment in time consists of the onset time τk and the period ∆k defined as 

follows:  

 
As can be seen the current state vector depends on the previous state vector xk-1 

modified by a switching variable representing different rhythmic units (γk) and 

noise model (wk) that takes into account deviations from the ideal sequence of 

onsets. Based on the above linear dynamical system the optimal sequence of 

tempo periods can be estimated using a Kalman filtering based approach. For 

more details please refer to [20].  

In the following section the accuracy of the four estimated beat period 

streams is evaluated. In addition we show that late fusion of the streams can 

significantly improve tempo detection accuracy. 

10.2 Experimental Results  

Tempo (BPM) Signal 80 100 120 140 
Audio 46% 85% 86% 80% 

Fret 27% 27% 57% 56% 
Thumb 35% 62% 75% 65% 
WISP 50% 91% 69% 53% 
LATE FUSION:     
Audio/WISP/Thumb/Fret 45% 83% 89% 84% 
Audio/WISP/Thumb 55% 88% 90% 82% 
Audio/ WISP 58% 88% 89% 72% 

Audio/Thumb 57% 88% 90% 80% 
WISP/Thumb 47% 95% 78% 69% 

Figure 70 - Comparison of Acquisition Methods. 
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Figure 70 shows the percentages of frames for which the tempo was correctly 

estimated. Tempo estimates are generated at 86Hz resulting in approximately 

2600 estimates/30 second clip in the dataset. From the percentages of Figure 70, 

we can conclude that when using a single acquisition method, the WISP obtained 

the best results at slower tempos, and the audio signal was best for faster tempos. 

Overall, the audio signal performed the best as a single input, whereas the fret 

data provided the least accurate information.  

When looking carefully through the detected onsets from the different 

types of acquisition methods, we observed that they exhibit outliers and 

discontinuities at times. To address this problem we utilize a late fusion approach 

where we consider each acquisition method in turn for discontinuities. If a 

discontinuity is found, we consider the next acquisition method, and repeat the 

process until either a smooth estimate is obtained or all acquisition methods have 

been exhausted. When performing late fusion the acquisition methods are 

considered in the order listed on bottom half of Figure 70.   

 

 
Figure 71 - Normalized Histogram of Tempo Estimation of Audio (left) and Fused Audio and Thumb 

(right) 
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Figure 72 - Kalman Tempo Tracking with decreasing onset periods. 

 
 

10.3 Summary 

By fusing the acquisition methods together, we are able to get more accurate 

results. At 80 BPM, by fusing the information from WISP and the audio streams, 

the algorithm generates more accurate results then either signal on its own.  When 

all the sensors are used together, the most accurate results are achieved at 140 

BPM, proving that even the fret data can improve accuracy of tempo estimation. 

Overall, the information from the audio fused with the thumb sensor was the 

strongest.  

Figure 71 shows histograms of the ratio between the estimated tempo and 

the correct tempo. The ratios are plotted on a log2 scale where the zero point 

indicates correct tempo while -1 and +1 indicate half and double errors 

respectively. Errors of 3/2 noticed at 0.6 on the log2 scale can be attributed to the 

tempo tracker falsely following triple meter onsets [63]. Figure 71 shows that a 

greater accuracy can be achieved by fusing the audio stream with the thumb 

sensor stream. Figure 72 shows how as the onset period calculated decreases, the 

output of the Kalman Filter increases in tempo. This is key to understand how this 

methodology can be used for a sitar performer to speed up and have the robotic 

drummer follow in real-time. This is a key attribute for “intelligent” machine- 
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based musical performance systems extending the performers and composers 

capabilities for creating new music.     
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11 
11  

Rhythm Accompaniment 
Experiments  

Beat Analysis for Automatic “Memory” Generation 

 

raditional Indian Classical music has been taught with the aid of a 

electronic Tabla box, where students can practice along with pre-recorded 

theka loops. This allows the performer to select any time cycle and 

rehearse at a variable tempo. The main problem with this system is that one beat 

repeats over and over again, which is boring and not realistic for a true 

performance situation. This motivated the work explored in this chapter of 

generating an interactive rhythm accompaniment system which would evolve 

based on human input. We will present a software framework to generate machine 

driven performance using a database structure for storing “memory” of “what to 

perform”. This application introduces a new level of control and functionality to 

the modern North Indian musician with a variety of flexible capabilities.  

T

This chapter begins by describing two applications for automatic rhythmic 

accompaniment. It then describes methods and experimentation on how a 

machine can automatically fill its own “memory” with rhythms by “listening” to 

audio files.   
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11.1 Applications 

A series of performance scenarios using custom written software were designed to 

interface the ESitar with MahaDeviBot. This section will describe two 

frameworks towards interactive machine musicianship: (1) a symbolic MIR-based 

approach, and (2) an audio driven MIR-based approach. 

11.1.1 A Symbolic MIR-based Approach 

The Music Information Retrieval (MIR) community 35  inspired our initial 

framework and experimentation for this approach. The goal of this system is to 

generate a variety of rhythmic accompaniment that evolves over time based on 

human performance by using sensors to query databases of pre-composed beats. 

To achieve this, symbolic event databases (shown in Figure 73) for each robotic 

instrument were filled with rhythmic phrases and variations. During performance, 

at any given time, queries are generated by sensor data captured from the human 

performer. As this software is written in ChucK [189], it was easy for the 

databases to be time and tempo locked to each other to allow for multiple 

permutations and combinations of rhythm. Figure 73 shows an example of how 

the system can be mapped. In this case, thumb pressure from the ESitar queries 

what rhythm robotic instrument 1 (Dha strokes) will mechanically play on the low 

frame drum. It is possible to generate a large number of combinations and 

permutations of rhythms by accessing patterns in each database. This proved to be 

a successful technique for performances on stage36.  

                                                 
35 http://www.ismir.net/ (January 2007) 
36 Videos Available at: http://www.karmetik.com  
                                    (Technology  Robotics Department)   
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Figure 73 - Symbolic MIR-based approach showing how ESitar sensors are used as queries to multiple 

robotic drum rhythm databases. 

One issue to address is how the queries are generated. In order to provide 

additional information for queries the derivatives and second derivatives of each 

sensor data stream are also utilized. Also there are more advanced feature 

extraction methods, for example obtaining interonset interval values between 

peaks of the thumb pressure data. There are many algorithms that can be explored; 

however, the main philosophical question is whether the human should have full 

control of the machine’s performance. 

 

11.1.2 An Audio Driven MIR-based Approach 

A major drawback to the system described in the section above is that rhythms 

have to be pre-programmed symbolically “by hand”. This motivated this second 

approach, to have the machine automatically fill its databases by listening to pre-

recorded drum beats, music, or even take audio input from a live performer. We 

chose to write this software in Marsyas [177] because of its strong audio analysis 

capabilities. 

Now that we have a system to convert audio signals into symbolic data 

(described in Section 11.2) that can be used for robotic performance, the next step 

is to create a meaningful retrieval method for real-time performance.  

The first step is having a human play the ESitar along with each beat 

stored in the audio database. The sensor data is recorded and aligned with the 

corresponding symbolic rhythm. For our initial experiments, we chose to use the 
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thumb sensor as our query key, as seen in Figure 74. Before a performance, a 

database of symbolic rhythms for “Boom” and “Chick” are matched with the 

corresponding thumb sensor data.  

During live performance, a window of thumb sensor data is collected 

forming a query. This query is then compared with all the pre-recorded thumb 

sensor data in the database, by doing a simple correlation calculation. The closest 

match is used to select the corresponding symbolic “boom” and “chick” rhythm 

for performance by MahaDeviBot.    

 
Figure 74 - Audio Driven Retrieval Approach. 

  

11.2 Method  

This section explores the use of signal processing techniques to provide rhythmic 

transcriptions of polyphonic music and drum patterns [180] to fill the databases 

and build computer “memory”. Transcription refers to the process of converting 

the audio recording to a symbolic representation similar to a musical score. The 

transcribed symbolic representation can then be used for retrieval tasks as 

described in the above applications. 

In order to extract information for transcription and retrieval applications 

we perform what we term “boom-chick” analysis. The idea is to detect the onset 

of low frequency events typically corresponding to bass drum hits and high 
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frequency events typically corresponding to snare drum hits from the polyphonic 

audio sources. This is accomplished by onset detection using adaptive 

thresholding and peak picking on the amplitude envelope of two of the frequency 

bands. Unlike many of the proposed approaches in drum transcription we do not 

utilize a classification model because that would constrain the application of our 

method to specific types of sounds. Even when a classification approach is 

utilized a data-driven front end as the one described in this work can be used as a 

preprocessing step for training. Two front-ends are compared. The first one is 

based on using regular band pass filters designed for detecting drum sounds. The 

second one is based on the wavelet transform and is similar to the Beat Histogram 

calculation front-end described in [178]. Experiments in section IV compare 

results using the two front-ends. 
 

11.2.1 Filter analysis 

In order to detect drum sounds two sub bands (“boom” and “chick”) are utilized. 

The signal is analyzed in windows of approximately 3 seconds. The frequency 

range for the low sub band is 30Hz to 280Hz. This was determined empirically to 

give good results over a variety of drum loops and music recordings. A simple 

band pass filter implemented in the frequency domain was used to select the 

“boom” band. The frequency range for the high sub band is 2700 Hz- 5500 KHz. 

The “chick” sub band is implemented using a Butterworth filter. 
 

11.2.2 Wavelet-based analysis 

The second front-end is based on decomposing the signal into different frequency 

bands using a Discrete Wavelet Transform (DWT) similar to the method 

described in [178] for the calculation of Beat Histograms. Figure 75 shows how a 

window of an audio signal (approximately 3 seconds) is converted to the wavelet 

domain with a fourth order Daubechies wavelet. The “boom” band and the 
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“chick” band were determined through experimentation although unlike the filter-

based approach the boundaries were constrained by the octave characteristics of 

the dyadic wavelet transform. The bands with the most information were 

approximately 300Hz-600Hz for the “boom” and 2.7KHz-5.5KHz for the “chick”. 

To convert the signals back to the time domain, the wavelet coefficients for all the 

bands except the chosen one are set to zero and then the Inverse Wavelet 

Transform is calculated, converting the subband signal to the time domain. 

 
Figure 75 - Wavelet Front End for Drum Sound Detection. 

 

11.2.3 Envelope extraction and Onset Detection 

Once the sub bands are calculated using either front-end, they are processed to 

find the onset of the “boom” and “chick” sounds. First the envelope of each 

subband is calculated by using full wave rectification followed by low pass 

filtering and normalization. Once the envelope is extracted an adaptive peak 

detection algorithm based on thresholding is utized to find the onset times of the 

percussive sounds. If the spacing between adjacent peaks is small, then only the 
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highest peak will be selected. Figure 76 shows a drum loop decomposed into 

“boom” and “chick” bands and the corresponding detected onsets. 
 

 
Figure 76 - Audio Signal “Boom-Chick” Decomposition. 

 

11.2.4 Transcription 

The goal of our transcription is to convert the two sequences of onset times for the 

“boom” and “chick” bands into symbolic form. Music notation is relative to the 

tempo of the piece which means that two pieces that have the same drum pattern 

played at different tempi will still have the same notation. The first step for 

transcription is to calculate the IOI (Interonset Intervals) which are the time 

differences in samples between onset positions. The IOIs are subsequently 

quantized in order to ignore small variations in tempo. A combination of 

heuristics based on music knowledge and clustering of the quantized IOIs is used 

to select the IOI that corresponds to a quarter note. Once this basic rhythmic unit 

is established all IOIs are expressed relative to it as integer ratios. The resulting 

ratios can then be directly rendered in music notation. Currently the output of the 

system is a textual representation of the durations. Figure 77 show a common 

music notation and an Indian tabla notation rendering of the output of the system.  
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Even though the graphic notation was rendered manually it corresponds directly 

to the output of the drum transcription system. 

 
Figure 77 -  (left) Transcribed Drum Loop (Bass and Snare). (right) Transcribed Tabla Loop in Hindi 

(Dadra – 6 Beat). 
  

11.2.5 Data Collection 

Three sample data sets were collected and utilized. They consist of techno beats, 

tabla thekas and music clips. The techno beats and tabla thekas were recorded 

using DigiDesign Digi 002 ProTools at a sampling rate of 44100 Hz. The techno 

beats were gathered from Dr. Rex in Propellerheads Reason. Four styles (Dub, 

House, Rhythm & Blues, Drum & Bass) were recorded (10 each) at a tempo of 

120 BPM. The tabla beats were recorded with a pair of AKG C1000s to obtain 

stereo separation of the different drums. Ten of each of four “thekas” (meaning 

beats per cycle) were recorded (Tin Taal Theka (16), Jhaap Taal Theka (10), 

Rupak Theka (7), Dadra Theka (6)). The music clips consist of jazz, funk, 

pop/rock and dance music with strong rhythm.  

11.3 Experimental Results  

The evaluation of the system was performed by comparative testing between the 

actual and detected beats by two drummers. After listening to each track, false 

positive and false negative drum hits were detected separately for each type 

(“boom” and “chick”). False positives are the set of instances in which a drum hit 

was detected but did not actually occur in the original recording. False negatives 

are the set of instances where a drum hit occurs in the original recording but is not 

detected automatically by the system. In order to determine consistency in 

annotation, five random samples from each dataset were analyzed by both 
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drummers. The results were found to be consistent and therefore the ground-truth 

annotation task was split evenly among the two drummers. These two expert users 

also provided feedback for the fine tuning of the system. 

The results are summarized using the standard precision and recall 

measures. Precision measures the effectiveness of the algorithm by dividing the 

number of correctly detected hits (true positives) by the total number of detected 

hits (true positives + false positives). Recall represents the accuracy of the 

algorithm by dividing the number of correctly detected hits (true positives) by the 

total number of actual hits in the original recording (false negatives + true 

positive). Recall can be improved by lowering precision and vice versa. A 

common way to combine these two measures is the so called F-measure defined 

as (P is precision, R is recall and higher values of the F-measure indicate better 

retrieval performance): 
F = 2 * P * R 
        P + R 

 
Figure 78 summarizes the detection results using the two front-ends for 

the 3 different audio data collections. As can be seen from the figure overall the 

detection of the low frequency “boom” events is better than the “chick” events. 

This is expected as there is less variability in bass drum sounds and less 

interference from other instruments and percussive sounds. The results are better 

for the drum loops and tabla thekas where there are only percussive sounds. As 

expected the results are not as good for the polyphonic audio clips where the 

presence of other interfering sounds, such as singers, guitars, and other 

instruments makes detection harder. The difference between the feature front-ends 

is statistically insignificant given the size of the collections used. As the filter 

front-end is faster to compute, we provide more detailed results for that front-end 

in Figure 79. Drum transcription of a 30-second clip on a Pentium III 1.2 GHz 

takes approximately 8 seconds for the wavelet front-end and 2 seconds for the 

filter front-end. These performance measurements are relative as there was no 
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effort to optimize the run-time performance of the system. Also the analysis is 

causal (requires a single pass) and therefore can be performed on streaming audio. 

 
Figure 78 - Comparison of Filter and Wavelet Front-end. 

 

 

 
Figure 79 - “Chick” hit detection results for Filter Front End (left). "Boom" hit detection results for 

Filter Front End (right). 
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11.4 Summary 

This chapter describes a system for a robotic drummer to accompany a live sitar 

performer. The system uses a retrieval approach to access pre-recorded/processed 

data in real-time based on interaction with the human performer. In essence this is 

a “memory” system for musical information. We also show experimentation on 

methods of the machine filling its own “memory” using audio signal processing 

methods for onset detection. A comparison of a filter-based method and a 

wavelet-based method is described. The final goal of this line of research is to 

have the machine listen and create its own database during a performance 

generating new rhythmic passages at every concert, following the tradition of 

North Indian classical music.  
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12 
12   

Pitch & Transcription 
Experiments 

Pedagogical Tools for Preservation 

 

istorically, most musical traditions were preserved via oral transmission. 

With the invention of music notation, audio recordings, and video, 

more information can be retained. However, most of the valuable 

performance data must still be passed by oral means. There will never be a 

technological replacement for face-to-face teaching, but new methods for 

archiving performance data will let us retain and disseminate more information. 

Automatic music transcription is a well-researched area [93, 101, 203]. The 

novelty of our work presented in the chapter is that we look beyond the audio data 

by using sensors to avoid octave errors and problems caused from polyphonic 

transcription. In addition, our work does not share the bias of most research that 

focuses only on Western music. 

H

This chapter describes a music transcription system for sitar performance. 

Unlike many Western fretted stringed instruments (classical guitar, viola de 

gamba, etc) sitar performers pull (or “bend”) their strings to produce higher 

pitches. In normal performance, the bending of a string will produce notes as 

much as a fifth higher than the same fret-position played without bending. In 
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addition to simply showing which notes were audible, our framework also 

provides information about how to produce such notes. A musician working from 

an audio recording (or transcription of an audio recording) alone will need to 

determine from which fret they should begin pulling. This can be challenging for 

a skilled performer, let alone a beginner. By representing the fret information on 

the sheet music, sitar musicians may overcome these problems. 

Most automatic music transcription research is concerned with producing 

sheet music from the audio signal alone. However, the audio data does not include 

certain performance data that is vital for the preservation of instrument 

performance techniques and the creation of annotated guidelines for students. We 

propose the use of modified traditional instruments enhanced with sensors which 

can obtain such data; as a case study we examine the sitar. This chapter describes 

how the technology we built can be used to preserve intricacies of traditional 

North Indian performance in generating a paradigm for automatically generated 

sheet music.   

12.1 Method 

For the research described in this chapter, fret data from the ESitar was captured 

by a network of resistors connecting each fret as described in Chapter 7. The fret 

sensor is translated into MIDI pitch values based on equivalent resistance induced 

by left hand placement on the neck of the instrument. Each fret has a “bucket” of 

values, converting raw sensor data into discrete pitch values seen in Figure 81. 

Data was recorded at a sampling rate of (44100 ÷ 512) Hz. The synchronized 

audio signal was recorded with a Shure Beta-57 microphone at 44100 Hz. The 

entire system is displayed in Figure 80. 
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Figure 80 - Block Diagram of Transcription Method 

 

12.1.1 Audio Signal Chain and Pitch Extraction  

A compressor/limiter was used on the audio signal to generate balanced amplitude 

for all frequencies. Without this step, our experiments yielded poor results for 

notes played at lower frequencies.  

To automatically determine the pitch an implementation of the method 

described in [15] was used. We utilize the autocorrelation function to efficiently 

estimate the fundamental frequency (f0). For a time signal s(n) that is stationary, 

the autocorrelation ( )τsr  as a function of the lag is defined as: 

( ) ( ) ( )ττ += ∑
+

=

tsts
n

r
Nt

tj
s

1  

This function has a global maximum for r = 0. If there are also significant 

additional maxima, the signal is called periodic and there exists a lag0, the period, 

so that all these maxima are placed at the lags n0, for every integer n, with rs(n0) = 

rs(0).  The inverse of the lag0 provides an estimation of the fundamental frequency 

f0. The period is determined by scanning rs( ), starting at zero, and stopping at the 

first global maximum with a non-zero abscissa. Quadratic interpolation is used to 

further improve the frequency estimation. In practical cases, the relative 

amplitude of those maxima may change and other maxima may appear due to 

small aperiodicities of the signal. The issue then is to relevantly select which 
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maximum corresponds to the f0 by considering several candidates under a 

plausible range and pick the one with the highest confidence. See [15] for further 

references on the algorithm. 

 

12.1.2 Fusion with Fret Signal Chain 

Although military grade (1% tolerance) resistors were used, the fret data was still 

noisy due to environmental factors including the resistance of the performer’s 

body. For each sample, we smoothed the data by comparing the median value of 

the previous ten samples with the median of the next ten samples (including the 

current sample). If the median values differed by more than a certain amount, we 

marked that sample as being a note boundary. 

To get an accurate final result, pitch information from the audio signal 

chain was fused with onset and pitch boundaries calculated from the fret signal 

chain. The fret provided convenient lower and upper bounds on the pitch: a note 

cannot be lower than the fret, nor higher than a fifth (ie seven MIDI notes) above 

the fret. Using the note boundaries derived from the fret data, we found the 

median value of the pitches inside the boundaries supplied by the fret data. These 

are represented by the vertical lines in Figure 81, and are the note pitches in the 

final output. 

 
Figure 81 - Fret data (red), Audio pitches (green) , and the resulting detected notes (blue lines). 
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12.2 Sheet Music 

Although there are many computer notation programs for Western music, there 

are no such counterparts for Indian music. Indian notation is not standardized and 

there is no way to notate both frets and audible notes, so we invented our own 

notation. In North Indian classical music, notes are described by seven swaras. 

They are known as Shadja (Sa), Rishab (Re), Gandhar (Ga), Madhyam (Ma), 

Pancham (Pa), Dhaivat (Dha), and Nishad (Ni). These are equivalent to the 

Western solfege scale (More details in Appendix A). We produce sheet music 

(Figure 82) showing sitar musicians the audible note played and which fret was 

used. 

 
Figure 82 - Sheet music of Sitar Performance. The top notes are the audible notes, while the lower 

notes are the fret position. Notice the final three notes were pulled. 

12.3 Summary  

We have developed a system which can be used to produce sheet music for sitar 

musicians. In addition to simply showing which notes were audible, it also 

provides information about how to produce such notes. As well as aiding 

beginners, the sheet music may be used for archival purposes.   

Although the system works well for simple sitar melodies, currently it 

does not detect glissandi. In addition, since we detect note boundaries by 

examining the fret data, we cannot detect repeated notes plucked on the same fret. 

Future work in this area is planned, as is inventing notation to display expressive 

marks.  
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13  
“Virtual-Sensor”        
Gesture Extraction  

Chapter 

13 
Capturing data from the Timbre Space 

 

hroughout history musical instruments have been some of the best 

examples of artifacts designed for interaction. In recent years a 

combination of cheaper sensors, more powerful computers and rapid 

prototyping software have resulted in a plethora of interactive electroacoustic 

music performances and installations. In many of these performances, traditional 

acoustic instruments are blended with computer generated sounds and visuals. 

Automatically sensing gestures is frequently desired in such interactive 

multimedia performances. 

T

There are two main approaches to sensing instrumental gestures. In direct 

acquisition, traditional acoustical instruments are extended/modified with a 

variety of sensors such as force sensing resistors, and accelerometers (as 

described in Chapters 5-8). The purpose of these sensors is to measure various 

aspects of the gestures of the performers interacting with their instruments. A 

variety of such “hyper” instruments have been proposed (as described in Chapter 

2). However, there are many pitfalls in creating such sensor-based controller 

systems: Purchasing microcontrollers and certain sensors can be expensive; The 

massive tangle of wires interconnecting one unit to the next can become failure-
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prone. Things that can go wrong include: analog circuitry break down, or sensors 

wearing out right before or during a performance forcing musicians to carry a 

soldering iron along with their tuning fork. The biggest problem with “hyper” 

instruments is that there is usually only one version, and the builder is the only 

one that can benefit from the data acquired and use the instrument in performance.  

These problems have motivated researchers to work on indirect acquisition in 

which the musical instrument is not modified in any way. The only input is 

provided by noninvasive sensors, typically with one or more microphones. The 

recorded audio is then analyzed to measure the various gestures. Probably the 

most common and familiar example of indirect acquisition is the use of automatic 

pitch detectors to turn monophonic acoustic instruments into MIDI instruments. 

In most cases indirect acquisition doesn’t directly capture the intended 

measurement and the signal needs to be analyzed to extract the information. 

Usually this analysis is achieved by using real-time signal processing techniques. 

More recently an additional stage of supervised machine learning has been 

utilized in order to “train” the information extraction algorithm. The disadvantage 

of indirect acquisition is the significant effort required to develop the signal 

processing algorithms. In addition, if machine learning is utilized the training of 

the system can be time consuming and labor intensive. 

The main problem addressed in this chapter is the efficient and effective 

construction of indirect acquisition systems for musical instruments in the context 

of interactive media. Our proposed solution is based on the idea of using direct 

sensors to train machine learning models that predict the direct sensor outputs 

from acoustical data. Once these indirect models have been trained and evaluated, 

they can be used as “virtual” sensors in place of the direct sensors. This approach 

is motivated by ideas in multimodal data fusion with the slight twist that in our 

case the data fusion is only used during the learning phase. We believe that the 

idea of using direct sensors to learn indirect acquisition can be applied to other 

areas of multimodal interaction in addition to musical instruments. 
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This approach of using direct sensors to “learn” indirect acquisition 

models has some nice characteristics. Large amounts of training data can be 

collected with minimum effort simply by playing the enhanced instrument with 

the sensors. Once the system is trained and provided the accuracy and 

performance of the learned “virtual” sensor is satisfactory there is no need for 

direct sensors or modifications to the instrument.  

The traditional use of machine learning in audio analysis has been in 

classification where the output of the system an ordinal value (for example the 

instrument name). We explore regression that refers to machine learning systems 

where the output is a continuous variable. One of the challenges in regression is 

obtaining large amounts of data for training; this is much easier using our 

proposed approach. In our experiments, we use audio-based feature extraction 

with synchronized continuous sensor data to train a “virtual” sensor using 

machine learning. More specifically we describe experiments using the ESitar, 

further extending the use of the traditional North Indian sitar. This chapter 

describes our method of experimentation, results and conclusions.  

13.1 Method 

13.1.1 Audio-Based Analysis  

In this section we describe how the audio signal is analyzed. For each short time 

segment of audio data numerical features are calculated. At the same time, sensor 

data is also captured. These two steams of data potentially have different 

sampling rates. In addition, in some cases, the gestural data is not regularly 

sampled. We have developed tools to align the two streams of data for these cases. 

Once the features are aligned with the sensor data, we train a “pseudo” sensor 

using regression and explore its performance.   
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13.1.1.1 Audio-Based feature extraction 
The feature set used for the experiments described in this paper is based on 

standard features used in isolated tone musical instrument classification, music 

and audio recognition. It consists of four features computed based on the Short 

Time Fourier Transform (STFT) magnitude of the incoming audio signal. It 

consists of the Spectral Centroid (defined as the first moment of the magnitude 

spectrum), Rolloff, Flux as well as RMS energy. The features are calculated using 

a short time analysis window with duration 10-40 milliseconds. In addition, the 

means and variances of the features over a larger texture window (0.2-1.0 seconds) 

are computed resulting in a feature set with eight dimensions. The large texture 

window captures the dynamic nature of spectral information over time and was a 

necessary addition to achieve any results in mapping features to gestures. Ideally 

the size of the analysis and texture windows should correspond as closely as 

possible to the natural time resolution of the gesture we want to map. In our 

experiments we have looked at how these parameters affect the desired output. In 

addition, the range of values we explored was determined empirically by 

inspecting the data acquired by the sensors. 

13.1.1.2 Audio-Based Pitch Extraction 
The pitch of the melody string (without the presence of drones) is extracted 

directly from the audio signals using the method described in [173]. This method 

is an engineering simplification of a perceptually-based pitch detector and works 

by splitting the signal into two frequency bands (above and below 1000Hz), 

applying envelope extraction on the high-frequency band followed by enhanced 

autocorrelation (a method for reducing the effect of harmonic peaks in pitch 

estimation). Figure 83 shows a graph of a simple ascending diatonic scale 

calculated directly from audio analysis.  
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Figure 83 - Graph of Audio-Based Pitch extraction on an ascending diatonic scale without drone 

strings being played. 

 

The audio-based pitch extraction is similar to many existing systems that do 

not use machine learning, therefore it will not be further discussed. Currently the 

audio-based pitch extraction works only if the drone strings are not audible. As a 

future project, we are planning to explore a machine learning approach to pitch 

extraction when the drone strings are sounding.  

The interaction between sensors and audio-based analysis can go both ways. 

For example, we used the audio-based pitch extractor to debug and calibrate the 

fret-sensor. Then the fret sensor we used as ground truth for machine learning of 

the pitch in the presence of drone strings. We believe that this bootstrapping 

process can be very handy in the design and development of gestural music 

interfaces in general.   

13.1.1.3 Regression Analysis 
Regression refers to the prediction of real-valued outputs from real-valued inputs. 

Multivariate regression refers to predicting a single real-valued output from 

multiple real-valued inputs. A classic example is predicting the height of a person 

using their measured weight and age. There are a variety of methods proposed in 

the machine learning [114] literature for regression. For the experiments 

described in this chapter, we use linear regression where the output is formed as a 
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linear combination of the inputs with an additional constant factor. Linear 

regression is quick to compute and therefore useful for doing repetitive 

experiments for exploring the parameters. We also employ a more powerful back 

propagation neural network [96] that can deal with non-linear combinations of the 

input data. The neural network is slower to train but provides better regression 

performance. Finally, the M5 prime decision tree based regression algorithm was 

also used [138]. The performance of regression is measured by a correlation 

coefficient which ranges from 0.0 to 1.0 where 1.0 indicates a perfect fit. In the 

case of gestural control, there is significant amount of noise and the sensor data 

doesn’t necessarily reflect directly the gesture to be captured. Therefore, the 

correlation coefficient can mainly be used as a relative performance measure 

between different algorithms rather than an absolute indication of audio-based 

gestural capturing. 

13.1.1.4 Data Collection 
In order to conduct the experiments the following tools were used to record audio 

and sensor data. Audio files were recorded with DigiDesign’s ProTools Digi 002 

Console using a piezo pickup (shown in Figure 45) placed directly on the sitar’s 

tabli. MIDI data was piped through  pure data [136] where it was filtered and 

sent to a custom built MIDI Logger program which recorded time stamps and all 

MIDI signals. Feature extraction of the audio signals was performed using 

Marsyas. The sampling rate of the audio files and the sensor data were not the 

same. The audio data was sampled at 44100 Hz and then down sampled for 

processing to 22050 Hz. Also the sensor data were not regularly sampled.  Tools 

were developed to align the data for use with Weka [72], a tool for data mining 

with a collection of various machine learning algorithms.  

For the experiments, excerpts of a jhala portion of a raga were performed 

on the ESitar. Jhala is a portion of sitar performance characterized by the constant 

repetition of pitches, including the drone, creating a driving rhythm [7]. Because 

of the rhythmic nature of this type of playing we chose to explore the signals of 
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the thumb sensor to get an indication of mizrab pluck direction using audio-based 

feature analysis and regressive machine learning algorithms.  

13.2 Experimental Results  

Our first experiment was to analyze the effect of the analysis window size used 

for audio based feature extraction. Table 1 shows the results from this experiment. 

Take note that the texture size remained constant at 0.5 seconds and linear 

regression was used. The correlation coefficient for random inputs is 0.14.  It is 

apparent based on the table that an analysis window of length 256 (which 

corresponds to 10 milliseconds) achieves the best results. It can also be seen that 

the results are significantly better than chance. We used this window size for the 

next experiment. 

 

Analysis Window Size  

(samples at 22.5 KHz) 

128 256 512 

Correlation Coefficient 0.2795 0.3226 0.2414 
Table 1 - Effect of analysis window size. 

 
The next experiment explored the effect of texture window size and choice 

of regression method. Table 2 shows the results from this experiment. The rows 

correspond to regression methods and the columns correspond to texture window 

sizes expressed in number of analysis windows. For example, 40 corresponds to 

40 windows of 256 samples at 22050 Hz sampling rate which is approximately 

0.5 seconds. To avoid overfitting we use a percentage split where the first 50% of 

the audio and gesture data recording is used to train the regression algorithm 

which is subsequently used to predict the second half of recorded data.  
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 10 20 30 40 

Random 

Input 

0.14 0.14 0.14 0.14 

Linear 

Regression 

0.28 0.33 0.28 0.27 

Neural 

Network 

0.27 0.45 0.37 0.43 

M5’ Regression 

Method 

0.28 0.39 0.37 0.37 

Table 2 - Effect of texture window size (columns) and regression method (rows). 

 

It is evident from the table and Figure 84 that the best choice of texture 

window size is 20 which corresponds to 0.25 seconds. In addition, the best 

regression performance was obtained using the back propagation neural network. 

Another interesting observation is that the relation of inputs to outputs is non-

linear as can be seen from the performance of the neural network and M5’ 

regression algorithm compared to the linear regression.   

 
Figure 84- Graph showing the effect of texture window size and regression method.  
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13.3 Summary 

In this chapter, we propose the use of direct sensors to “train” machine learning 

models based on audio feature extraction for indirect acquisition. Once the model 

is trained and its performance is satisfactory the direct sensors can be discarded. 

That way large amounts of training data for machine learning can be collected 

with minimum effort just by playing the instrument. In addition, the learned 

indirect acquisition method allows capturing of non-trivial gestures without 

modifications to the instrument. We believe that the idea of using direct sensors to 

train indirect acquisition methods can be applied to other area of interactive media 

and data fusion.  

There are many directions for future work. We are exploring the use of 

additional audio-based features such as Linear Prediction Coefficients (LPC) and 

sinusoidal analysis. We are also planning more extensive experiments with more 

instruments, players and desired gestures. Creating tools for further processing the 

gesture data to reduce the noise and outliers is another direction for future 

research. Another eventual goal is to use these techniques for transcription of 

music performances. 

The idea of a “virtual” sensor will aid in making the software and tools 

designed to work specifically with the ESitar accessible to those who do not have 

sensor enhanced instruments. This will help disseminate the information to a 

larger audience of performers in India and continue to extend and preserve 

traditional techniques.   
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14 
14  

Affective Computing 
Experiments 

Gesture-Based Human Emotion Detection. 

 

 etecting and recognizing motion evolved to be an essential aspect of 

human survival. As part of this, the visual-perceptual system is 

extremely sensitive to implicitly coherent structures revealed through 

biological movement. Humans have the ability to extract emotional content from 

non-verbal human interaction, facial expressions and body gestures. Training a 

machine to recognize human emotion is far more challenging and is an active 

field of research generally referred to as “affective computing” [130]. Advances 

in this area will have a significant impact on human-computer interactive 

interfaces and applications.  

D

Since a performer is conveying feeling, sentiment and mood, emotion is 

an essential part of any music. Particularly in Indian Classical music, rasa theory 

refers to the aesthetic experience and emotional response of the audience during a 

performance. There are nine rasa states in which to categorize all raga-s: 

shringara (romantic/erotic), haysa (comic), karuna (pathetic), raudra (wrathful), 

vira (heroic), Bhayanaka (terrifying), bibhatsa (odious), adbhuta (wonderous), 

shanta (peaceful, calm) [7]. Hence affective computing systems have a role in 
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advanced “intelligent” music systems of the future. The experiments portrayed in 

this chapter are our first attempts at exploring this problem. They are in no way 

complete or fully comprehensive. We are simply setting a paradigm for which 

experimentation in this area can be explored, and giving initial results using the 

framework and technology we have discussed through out this dissertation.  

In this chapter we first describe background work in affective computing 

including motivation and applications to other fields other that music. Next, we 

describe our method for collecting data using the VICON motion capture system. 

Next, using collected data we show results of training automatic emotion 

classifiers using different machine learning algorithms. These results are 

compared with a user study of human perception of the same data. 

14.1 Background 

Imagine online learning systems which can sense if a student is confused and can 

re-explain a concept with further examples [83]. Imagine global positioning 

systems in cars re-routing drivers to less crowded, safer streets when they sense 

frustration or anger [56]. Imagine lawyers using laptops in the court room to 

analyze emotional behavior content from witnesses. Imagine audiovisual alarms 

activating when security guards, train conductors, surgeons or even nuclear power 

plant workers are bored or not paying attention [123]. These possible scenarios 

are indicative examples of what motivates some researchers in this emerging field 

of affective computing.  

Currently there are two main approaches to affective computing: Audio-

based techniques that determine emotion from spoken word (described in [40, 82, 

182]) and video-based techniques that examine and classify facial expressions 

(described in [13, 52, 151]). More advanced systems are multimodal and use a 

variety of microphones, video cameras and other biological sensors to enlighten 

the machine with richer signals from the human [25, 158, 204]. The above list of 
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references is representative of existing work and not exhaustive. For more details 

on the evolution and future of affective computing as well as more complete lists 

of references readers are pointed to papers [123, 131].   

In the review of the literature as briefly discussed above, almost all 

systems focus on emotion recognition based on audio or facial expression data. 

Most researchers do not analyze the full skeletal movements of the human body, 

with the exception of [132] who uses custom-built sensor systems such as a 

“Conductor’s Jacket”, glove, or a respiratory sports bra for data acquisition of 

selected human body movements. Others have used motion capture systems for 

affective computing experiments with methods different from our own [133, 183]. 

Following up on research by [45, 186] who present experiments which confirm 

that body movements and postures do contain emotional data, our team has 

designed a system that uses the VICON37 motion capturing system to obtain 

gestural data from the entire body to identify different types of emotion. 

14.2 Method 

14.2.1 Data collection 

Markers were placed at fourteen reference points on five different subjects (two of 

whom were professional dancers). The subjects were asked to enact four basic 

emotions using their body movements. No specific instructions for how these 

emotions should be enacted were given, resulting in a variety of different 

interpretations. The basic emotions used were sadness, joy, anger, and fear. The 

VICON system measured the trajectories of each subject’s movement in 3D space 

at a sampling rate of 120 Hz. Each subject performed each emotion twenty five 

times; and each emotion was performed for a duration of ten seconds. We 

manually labeled the reference points of the body throughout the window of 

                                                 
37 http://www.vicon.com (May 2005) 



 
1 5 8

movement and filled missing data points by interpolation. A database of 500 raw 

data files with continuous x, y, and z-coordinates of each of the fourteen reference 

points was created. This database was used to extract features for the machine 

learning analysis described in Section 14.3. Figure 85 shows a screenshot of the 

data capturing process.  

Data collection involving psychology and perception is challenging and its 

validity is frequently questioned. Although it can be argued that in acting out 

these emotions the subject’s cognitive processes might be different than the 

emotion depicted, it turns out that the data are perceived correctly consistently 

even when abstracted as described in the next section. In addition, since the 

choice of movements was made freely by the subjects we can stipulate that their 

motions are analogous to the actual display of these emotions.  Even though this 

way of depicting emotions might be exaggerated it is perceptually salient and its 

variability provides an interesting challenge to affective computing. 

 

 
Figure 85 - Screenshot of the data capturing process. The dots on the screen correspond to the markers 

taped onto the human body. 

14.3 Experimental Results 

14.3.1 Human Perception 

A user study to examine human perception of the motion-capture data was 

performed in order to provide context for machine learning experiments, as well 

as to validate the collected data. A subset of forty randomly ordered files from the 

database, with an equal proportion of each emotion and subject, were presented to 
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each subject as point light displays. In these point light displays, only the fourteen 

marker points are present (without stick figure lines) and the movement of the 

subject’s emotion for a ten second period is portrayed. Point light displays were 

used as they directly correspond to the data provided to the automatic classifiers 

and their perception is not affected by other semantic cues such as facial 

expressions.   

Sad Joy Anger Fear  Classified As 
95 0 2 3 Sad 
0 99 1 0 Joy 
1 12 87 0 Anger 
0 2 7 91 Fear 

Figure 86 - Confusion matrix of human perception of 40 point light displays portraying 4 different 
emotions. Average recognition rate is 93%. 

 
A group of ten subjects were tested in classification of these forty point 

light displays. A confusion matrix from results of this experiment is shown in 

Figure 86. An average recognition rate of 93% was achieved. It is worth noting 

that by watching a series of fourteen moving points humans can accurately 

identify representations of four different human emotions! This is probably 

achieved by looking at the dynamics and statistics of the motion parameters, 

which is what we use for features in the automatic system.  

 

14.3.2 Machine Learning Experiments 

From the human perception experiment described in Section 14.3.1, it can be seen 

that motion-capturing preserves the information necessary for identifying four 

emotional representations. The next step was to see if machine learning 

algorithms could be trained on appropriate features to correctly classify the 

motion-capture data into the four emotions. This section describes the feature 

extraction process followed by experiments with a variety of machine learning 

algorithms.  
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14.3.2.1 Feature Extraction 
After the raw data is exported from the VICON system, feature extraction 

algorithms are run using a custom built MATLAB program for importing VICON 

data and extracting features. After experimentation the following dynamics of 

motion features were selected for training the classifiers. There were fourteen 

markers, each represented as a point in 3D space, v = [x,y,z], where x, y, z are the 

Cartesian coordinates of the marker’s position. In addition, for each point the 

velocity (first derivative of position) dv/dt and acceleration (second derivative) 

d2v/dt2 were calculated. As we are mainly interested in the dynamics of the 

motion over larger time scales, we consider the mean values of velocity and 

acceleration and the standard deviation values of position, velocity and 

acceleration. The means and standard deviations are calculated over the length of 

ten-second duration of each emotion depicted. Although it is likely that alternative 

feature sets could be designed, the classification experiments described in the next 

section show that the proposed features provide enough information for quite 

accurate classification results.     

14.3.2.2 Machine Emotion Recognition Experiments 
Five different classifiers were used in the machine learning experiments: a logistic 

regression, a naïve bayes with a single multidimensional Gaussian distribution 

modeling each class, a decision tree classifier based on the C4.5 algorithm, a 

multi-layer perceptron backpropogation artificial neural network, and a support 

vector machine trained using the Sequential Minimal Optimization (SMO). More 

details about these classifiers can be found in [72]. Experiments were performed 

using Weka [72], a tool for data mining with a collection of various machine 

learning algorithms.  

The column labeled “All” on Figure 87 shows the classification accuracy 

obtained using ten-fold cross-validation on all the features from all the subjects 

and corresponds to a “subject-independent” emotion recognition system. The 
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column labeled “Subject” shows the means and standard deviations of 

classification accuracy for each subject separately using ten-fold cross-validation 

and corresponds to a “subject-specific” emotion recognition system.  The last 

column labeled “Leave One Out” corresponds to the means and standard 

deviations of classification accuracy obtained by training using four subjects and 

leaving one out for testing. 

 

Classifier All Subject Leave One Out 

Logistic 85.6 % 88.2%+-12.7% 72.8%+-12.9% 

Naive Bayes 66.2 % 85.2% +- 8.8% 62.2%+-10.1% 

Decision Tree (J48) 86.4 % 88.2% +- 9.7% 79.4%+-13.1% 

Multilayer Perceptron 91.2 % 92.8%+-5.7% 84.6%+-12.1% 

SMO 91.8 % 92.6%+-7.8% 83.6%+-15.4% 

Figure 87 - Recognition results for 5 different classifiers. 
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Figure 88 - Graph showing “Leave One Out” classification results for each subject using multiplayer 
perceptron and support vector machine learning classifiers. 
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Sad Joy Anger Fear  Classified As 
114 0 2 9 Sad 
0 120 4 1 Joy 
2 3 117 3 Anger 
10 3 4 108 Fear 

 

Figure 89 - Confusion matrix for “subject independent” experiment using support vector machine 
classifier. 

 

Figure 89 shows a confusion matrix for “subject independent” using the SMO 

classifier. As can be seen comparing the confusion matrix for human perception 

and automatic classification there is no correlation between the confusion errors 

indicating that even though computer algorithms are capable of detecting 

emotions they make different types of mistakes than humans.  

In all the experiments the support vector machine and the multiplayer 

perceptron achieved the best classification results. It should be noted that training 

was significantly faster for the support vector machine. 

14.4 Summary 

We have presented a system for machine emotion recognition using full body 

skeletal movements acquired by the VICON motion capture system. We validated 

our data by testing human perception of the point light displays. We found that 

humans achieved a recognition rate of 93% when shown a ten second clip. From 

our machine learning experiments it is clear that a machine achieves a recognition 

rate of 84% to 92% depending upon how it is calculated. The SMO support vector 

machine and multiplayer perceptron neural network proved to be the most 

effective classifiers.  

For a music application, after training our machine learning algorithms we 

ran the data from the violin player shown in Figure 90. This was a ten second clip 

of a composition playing a melody in the major scale. One can also see from the 

picture that the performer is smiling. Too our surprise, the machine classification 
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of this clip was happy. However, the machine only got this correct because it was 

trained to think that fast movement (dancers jumping up and down) is happy, and 

the performer happened to be performing at a fast tempo. In these types of 

experiments it is important to understand why the machine derives a certain 

answer.   

 
Figure 90 - What emotion is the violin player portraying? 

 
There are many directions for future work. We are exploring the use of 

different feature extraction techniques.  We also are collecting larger databases of 

subjects including more intricate detail of facial expression and hand movements. 

Increasing the number of emotions our system classifies to include disgust, 

surprise, anticipation and confusion are planned upgrades in the near future. We 

are moving toward a real-time multimodal system that analyzes data from 

microphones, video cameras, and the VICON motion sensors and outputs a 

meaningful auditory response. We believe that affective computing will play a 

major role in “intelligent” music interaction systems in the future.     
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Integration and Conclusions 
 

 



 
1 6 5Chapter 

15 
15  

Integration and Music 
Performance  

Chronological Performance Journal 

 

his chapter is a chronological diary of progress on experiments with 

musical performances created using the technology described throughout 

this dissertation. It discusses how the research goes from the laboratory to 

the concert hall. This is where the real world problems and experiences are 

obtained, generating ideas for solutions and inspiration for new directions. 

T

15.1 April 12, 2002 - ETabla in Live 
Performance 

One of the goals of the ETabla project was to make an instrument that can 

actually be used to create an audio and visual experience that expresses the 

feelings of the performer and enamors the audience. The premier performance of 

the Electronic Tabla was held on April 25th, 2002 in Taplin Auditorium, Princeton 

University. Princeton undergraduate and graduate students joined faculty 

members and alumni in a concert mixing music from India, Africa and America, 
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with electronic grooves and beats. Video clips can be found online38.   (See Figure 

91) 

 
Figure 91 - The ETabla in a live concert. Taplin Auditorium, Princeton University, April 25, 2002. 

 

The ETabla premiered in a traditional North Indian classical song playing 

a Tin Taal, the traditional rhythmical cycle of sixteen beats (see Appendix A for 

more information). The ETabla was also featured in a song with an artist playing 

the Roland GrooveBox, an instrument that by its nature very accurately keeps 

time. The playability of the ETabla easily held up in performance with the 

rhythmically precise drum machine. Another piece in the concert was the 

“Dissonance Ritual”, where the ETabla created atmospheric sound-scapes, 

triggering long lasting electronic samples. From the night’s performance, the 

practical usability of the ETabla was demonstrated in accompanying 

compositions in a variety of musical genres. Those in the audience gave informal 

positive feedback on the visual feedback system projected on a screen behind the 

performers, as well as the switch between traditional Indian Tabla sounds and the 

novel electronic sounds that the ETabla could trigger.  

 

                                                 
38 Available at: http://www.karmetik.com (January 2007) 
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15.2 June 3, 2003 - The Gigapop Ritual 

The Gigapop Ritual was a live network performance between McGill University 

in Montreal, Canada, and Princeton University in New Jersey, USA. This live 

collaborative musical performance, weaving cyber electronics and Indian classical 

tradition involved high-bandwidth, bi-directional real-time streaming of audio, 

video, and controller data from multiple sources and players at both sites, using 

the GIGAPOPR framework. In composing the piece we took into account a 

saying by Atau Tanaka: “Latency is the acoustics of the Internet” [169]. We 

composed a piece that was appropriate for this aesthetic. 

 

15.2.1 The composition 

We composed the piece to explore multiple areas of performance over a network, 

using the traditional structure for North Indian classical music, as well as taking 

into account the framework of the network itself. The first section, known as Alap, 

was a slow call and response section between two melody-making instruments 

(sitar in McGill, electric violin in Princeton). These two performers left space for 

one another to interact to different improvised themes and phrases. The second 

section, presented a precomposed melody (based on Raga Jog and Jai Jai Vanti), 

over a structured eight-beat rhythmic cycle known as Kherva (performed on tabla 

in Princeton). The challenge and solution in performing a melody (Ghat) over the 

network was to have a leading side, and a following side. The round-trip latency 

of 120 ms was about the same as the echo one would hear from the back wall of a 

60 foot room. Playing with other performers removed by 60 feet is somewhat 

common (in marching bands, antiphonal choirs, and other musical settings), and 

this experience was made only slightly more challenging by the large amount of 

equipment to be set up and tested. The performers in Princeton were the leaders, 

and once the data arrived in McGill, the Canadian performers simply played along, 
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reacting to what they heard. The third section was a free-form improvisation 

where musicians explored the network performance space. Performers used their 

custom built digital interfaces to create diverse computer generated sounds, while 

still focusing on interacting with the performers on the other side of the network. 

Each performer left enough space for others to react, and no one played 

anything unless it was a response to a ‘call’ from another musician. Thus we were 

able to create a spiritual tie using the two host computers at two geographical 

locations, connecting performers in the Pollack Concert Hall of McGill University 

with performers in the Princeton Computer Science Display Wall room for a 2003 

New Interfaces for Musical Expression (NIME) Conference performance. Video 

clips of performance can be found online39.  

 

 
Figure 92 - Diagram of Gigapop Ritual setup. 

 

                                                 
39 Available at: http://www.karmetik.com (January 2007) 
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Figure 93 - Gigapop Ritual Live Performance at McGill University with left screen showing live feed 

from Princeton University and right screen showing real time visual feedback of veldt. 

 

15.2.2 veldt visual representation 

Our intent was to create an environment in which the actions of both drummers 

were visible and distinguishable. Our implementation for this concert was to 

allow two players to interact through a sculptural metaphor. Using a dynamic 

geometry representation to allow modifications to the structures in real time, the 

two performers interacted through a series of operations to create a visual artifact 

of their drum patterns. Their strikes were dynamically mapped to a series of 

geometric operations that generated, deleted, deformed or detached elements of 

the structure and generated unique artifacts from the rhythms they played. In 

Figure 38 we see structures that have evolved under different mapping rules. In 

Figure 38 (left), for example, we chose a mapping that created smaller, separate 

elements rather than building from a central structure as in Figure 38 (middle). In 

Figure 38 (right), we chose rules which resulted in a solid, sheet-like structure. To 

add a convincing physical response to the addition and alteration of new elements, 

we used a mass-spring model to apply and distribute forces as the structures 

developed. In these figures, the actions of the drummer bend and distort the figure, 
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while secondary forces try to smooth and straighten the figure, like a plucked 

string whose vibrations decay to rest. 

To represent the shared performance space, we experimented with several 

different forms of visual ‘interaction’ between the signals received from two 

performance spaces. To begin, we assigned the two drummers to separate visual 

spaces: one drum would excite patterns as in the ETabla performance, while the 

second was assigned to build structures. We then designated both performers as 

builders, so that their rhythms would build upon one another. In the next section, 

one performer’s strikes would build while the strikes of the second would rattle or 

delete those structures. 

15.3 June 4th, 2004 – ESitar Live in Japan 

The ESitar was premiered at the Listening in the Sound Kitchen Computer Music 

Festival at Princeton University in November of 2003, an 8-channel composition 

“Saraswati’s Electro-Magic” was performed in collaboration with Phil Davidson 

and Ariel Lazier. It was performed again as a stereo composition on June 4th, 

2004 at the International Conference for New Interfaces for Musical Expression 

in Hamamatsu, Japan.  

In the performance, all of the signals generated by the ESitar were sent 

into a computer and captured by the pure data program. This information could 

be used in many other ways, but pd was chosen because of the ease of capturing 

and manipulating the control information within the pd environment. The 

following four settings describe a number of different pure data patches written to 

demonstrate how such ESitar controller information can be used. 
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Figure 94 - "Saraswati's ElectroMagic" Performances at Princeton NJ and Hamamatsu, Japan. 

 

15.3.1 Slide Sitar 

The slide sitar patch was modeled after the sound of a slide guitar. It is a simple 

module that consists of a bank of oscillating comb filters. The filters have a 

resonance that is determined by the frequency indicated by the fret information. 

The control information from the fret is used to change the resonance of the filters. 

We also use thumb pressure to control the amplitude of the resonance oscillation. 

Here we interpret thumb pressure as a measure of intensity of the performance. 

The intensity of each pluck can be heard through the amplitude of the filters’ 

oscillations. This is a very simple use of the control information, but such an 

effect could not be obtained without the detailed information provided by the 

ESitar. 

15.3.2 Sympathetic Pitch 

The sympathetic pitch patch plays rolls of a sampled sitar sound at the pitch 

indicated by the fret. In this case we mapped thumb pressure to the volume of the 

roll and head tilt to length of the notes and speed of the roll. Because the sounds 

produced do not directly correspond to the acoustic sound, this is more of a 

complementary patch. This is apparent when the performer increases the pressure 

on the thumb FSR on a beat where the strings are not strummed. In these 



 
1 7 2

instances the roll becomes more prominent and can function as a rhythmic 

replacement for the sitar when the acoustic sound is not heard. 

15.3.3 Ring Modulation and Delay 

This patch also takes into account the fret information, setting the frequency of 

the modulation according to the pitch indicated by the frets. This patch produces a 

distorted sound that would not be possible to create without the accurate pitch 

information provided by the controller. We also set up a delay system controlled 

by the head and the thumb. The system allows the musician to capture output 

from the ring modulator and then play the material as a solo loop or in 

combination with other loops. The head tilt controls which loops are played or 

filled with new sound, while the thumb controls if or how much sound should be 

played or stored into the loop buffers. 

15.3.4 Analysis/Re-Synthesis 

Our last example is a simple analysis/resynthesis patch. We use fret information 

and pitch information to identify which partials are generated by the struck note. 

Simply taking the strongest partials would not lead to the same results because of 

the sympathetic strings that are constantly resonating. Once the strongest partials 

are chosen, sine waves with very short envelopes are synthesized which together 

form a disjointed representation of the acoustic sitar sound. The volume of the 

resynthesis is scaled to the sound of the acoustic sitar and then controlled by head 

tilt. We warp the volume distribution of the detected partials using thumb pressure. 

When greater thumb pressure is applied, the lower partials are given more weight 

and are more easily discernable. 
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15.4 November 18, 2004 - ESitar and Eight 
Robotic Turntables 

The first experiment with working with robotic musical instruments was 

interfacing the ESitar with Trimpin’s Eight Robotic Turntables (Figure 95). 

ChucK 1.1 was used to map gestures captured on the ESitar to control parameters 

on the robotic turntables. The thumb sensor was used to control scratching of two 

of the turntables. Forward signals were triggered when the first derivative of the 

thumb sensor was greater than zero, while reverse signals were triggered when the 

derivative was less than zero. The other six turntables were pre-programmed to 

play a pre-composed rhythm for accompaniment.  

 
Figure 95 - ESitar Interfaced with Trimpin's Eight Robotic Turntables. 

 

In this experiment, the robots were either pre-programmed to play certain 

motifs or the human had direct control on what the robots were playing, thus 

turning the robots into expensive, hard to make, visually pleasing, acoustic 

synthesizers. There was no human to computer improvisation. However the 

success of this experiment creates motivation for exploring mechanical musical 

systems and how they can be used to make new music with a North Indian flavor.  
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15.5 April 18th, 2006 – ESitar with DeviBot 

The second experiment with robotics was to interface the ESitar with the first 

version of the custom built DeviBot. DeviBot at this stage was designed using 

three of Eric Singer’s ModBots [159]. One Bot was attached to a Chinese gong, 

another to a small Indian frame drum, and the last to a large Indian frame drum.  

 
Figure 96 - DeviBot and ESitar on Stage for First Time April 18th, 2006. 

 
All software for this experiment was written in ChucK. As the language 

had evolved since our last experiment, it was possible to create modular code, 

with classes for the ESitar, as well as for the DeviBot.  

The goal of this system is to generate a variation of a rhythmic 

accompaniment which evolves over time based on human performance. The first 

part of the piece with the robots was to perform “Clapping Music” by Steve 

Reich 40  on the two frame drums. In Clapping Music Reich uses beat point 

modulation to create changing rhythms by having a single rhythm shift out of 

phase with itself one eighth note duration at each modulation.  

The next step was to set up a database of musical rhythmic phrases which 

each instrument could perform. We take a symbolic approach so that robotic 

instances can be triggered as well as different sound samples for testing purposes. 

Queries for the database are generated by sensor data captured from the human 

                                                 
40 Steven Reich, Clapping Music (New York, NY: Universal Editions, 1972). 
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performer. The databases are time and tempo locked to each other using global 

variables. These global variables can be changed at any time, so that the machine 

can speed up or slow down based on the human’s performance. For the initial 

experiments, each instrument had four rhythms which it could retrieve. In this 

composition, tempo from a human performance was not deduced, so a set tempo 

was programmed. Figure 97 shows an example of how the system can be mapped.     

 
Figure 97 - MIR Framework for Human/Robot performance. 

One issue to address is how the queries are generated. There are many 

algorithms which can be explored; however the main philosophical question is 

whether or not the human should have full control of the machine’s performance. 

Another observation was discerning the difference between robotic 

accompaniment and sample-based accompaniment. There are many audio effect 

algorithms developed which can be controlled by sensor data from the human 

performer to create a vast amount of variety in machine performance. With the 

robots created to date, there is only one dimension of expression which can be 

controlled. Thus more work needs to be done on the robots to give them more 

degrees of freedom for expression.   

15.6 November 6th, 2006 – ESitar 2.0 with 
MahaDeviBot 

This experiment used the new model of the ESitar designed with the PIC 

microchip, and the beginning of the new custom built MahaDeviBot as seen in 

Figure 98. The new robot was constructed out of aluminum, a huge upgrade from 
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our first wooden prototype, which had unreliable fixtures that held both the 

instruments and the electronics in place. At this point, the robot has four Indian 

frame drums which it could strike. A Tin Taal rhythm and variations of a sixteen 

beat cycle were programmed into the memory of the robot with control signals 

coming entirely from the ESitar control box. The same frame work described in 

the April 18th, 2006 entry was used to generate variations of the performance 

rhythm of the accompanying robot. New features added to MahaDeviBot’s 

repertoire were control of the global tempo from a potentiometer, and the ability 

to turn each drum on or off at any time using buttons on the ESitar control box. 

   
Figure 98 - MahaDeviBot and ESitar in Concert on November 4th, 2006 in MISTIC Annual Concert 

Victoria BC. 

 
As of now, the MahaDeviBot only has one timbre, so it is difficult for it to 

accent the “one” of a cycle. The MahaDeviBot needs more instruments to 

generate more elaborate rhythms with diverse timbres. Experiments exaggerating 

the dynamic loudness of robotic strikes proved fruitful; however, as a learning 

tool for students, the “one” should be pronounced more obviously. One idea is to 

build the robot a hand in which it can mechanically display the traditional hand 

clapping of north Indian drumming, marking the “Sam” and “Khali” (See 

Appendix A for more information). Another idea is to attach microphones or 

piezos to each drum. It would be interesting to do signal processing on the audio 

signal of the drum, and morph it using sensor data from the performer. Also, 

sometimes the arms of the instrument detach themselves during performance. If 

the machine had intelligence that a “strike” message was being triggered, yet 

mechanical problems occur not allowing the beater to strike the drum, then it 

should have “intelligence” turn that arm off. Piezo sensors could easily be used to 
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solve this problem. These sensors could also be used for automatic calibration of 

volume.   

In terms of machine musicianship, there are three goals which need to be 

addressed. First, tempo from the human performer must be acquired. This can be 

accomplished by using data from the thumb sensor in real-time, in combination 

with audio signal. Second, the machine should have a sense of the performer’s 

“one”. This can maybe be accomplished either through dynamic analysis of 

performance data, or adding a new sensor to the ESitar which captures the 

downward stroke thru the sympathetic strings, which occasionally occurs on the 

“one”. Third, the machine should be able to recognize “Tihai-s” performed by the 

human, which are melodies which are repeated three times to mark the ending of 

a section or song.  

15.7 February 5th, 2007 – Meeting with 
Trimpin 

After three months of development of the lower four frame drum construction, a 

major issue was that the arms would fall apart (screws fall out, zipties break loose, 

and rods fall out) within the first ten minutes of performance.  This motivated 

work on improving structural integrity the MahaDeviBot. Metal rods were 

hammered into the aluminum blocks and secured with small set screws. A new 

mechanism for connecting the solenoid’s shaft to the aluminum block was 

invented using a ball-baring system inspired by parts used for RC car construction. 

After these upgrades were installed, the robots were tested for four hour periods 

without disassembling. This made them ready for the next test, a meeting with 

Trimpin.  

Trimpin gave incrediblely constructive criticism, based on his 30 years of 

experience in working with musical robots. He first pointed out that the solenoids 

in their current position are working against gravity, which makes them much 
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slower. He also stressed the importance of using flexible parts. When the drums 

and beaters are tied securely to the metal frame, all striking generates vibrations 

that permeate through the entire structure which can cause unwanted sounds and 

weakening of joints.  Using bumpers, felt and other rubber insulation techniques 

reduces resonant frequencies in the frame and ensures more natural and human-

like responses. Trimpin also explained that using 20/2041 slotted aluminum is a 

wise choice, as he has been using it for decades, but that 15/15 that is used for 

MahaDeviBot is complete overkill and the system would be secure with 10/10 

pieces.  

We then discussed the use of different solenoids and power usage. The 

ratings of the solenoids are obviously important. 15-30 ohm solenoids are 

appropriate for striking applications, whereas 70 ohm solenoids are suitable for 

damping applications. The lower the resistance of the solenoid, the higher the 

current pulled. Our system currently runs with 15 ohm solenoids which draw 

close to 1.5 amps. Our power supply is only 3 amps, so when all four solenoids 

are triggered at the same time, there can be problems. This will also cause 

problems when thirteen solenoids are all in use in the future. Thus a new power 

supply must be acquired. Trimpin also explained that using power supplies with 

two leads, 24 volts and ground, and deriving 5 volts with circuitry, as currently 

built for the system, can cause problems in the future. He recommends a supply 

that has three lines, regulated 24 volts, 5 volts and ground. The current 

configuration will heat up the 5 volt power regulator. To lower the chance of 

problems, he attached a clip to cool the device, by increasing the surface area of 

the metal on the regulator.  

                                                 
41 Available at www.8020.net (July 2007). 
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15.8 March 11th, 2007 – National University of 
Singapore Concert  

Surprisingly, after one month of the MahaDeviBot being stored in a suitcase in 

Professor Lonce Wyse’s office and while the ESitar went on a backpacking trip 

through the southern beaches of Thailand, everything still functioned properly for 

a big concert at the Annual NUS Arts Festival. This was a significant feature for 

the ESitar 2.0, as ESitar 1.0 frets would have to be resoldered after every show. 

The robot performed just as well before and after the storage, without any 

practicing needed too keep up its’ “chops”. This is in stark contrast to the human 

performer, who left his computer behind and only had the ESitar to practice hours 

everyday.  

The sound check for the show was ten hours long. Drums were raised and 

a stereo pair of microphones was placed underneath them. After EQing, the robot 

drums sounded perfect, which is a paradox because the desired sound was coming 

through speakers, which kind of defeats the whole point of one of our original 

goals. But aesthetically, this is the sound we have been searching for from the 

beginning. Also, we setup the MacBook Pro’s built-in video camera to show half 

human arm and half robotic arm to the audience. Of course the image was delayed 

using Photo Booth, but allowed audience members in the back to see the 

intricacies of the movements of the mechanical parts.   

   
Figure 99 - MahaDeviBot being controlled with the ESitar at NUS Arts Festival in Singapore. 
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The concert lasted fifty minutes. The first phase was an alap section 

introducing Raga Yaman. Here a “butterfly effect” was performed by the robot. 

The idea was to show the audience that the robot could actually move, in relation 

to the performance of the human performer. The robots arms would flutter at a 

very high rate and low velocity so that the mallets do not strike any drums. The 

fret position would determine which arm would move, while the thumb pressure 

would excite the fluttering. The next section used an audio driven program, 

showing the audience how the robot react to the sound of the human sitar player. 

Using Professor Perry Cook’s “leaky integrator” ChucK code, the robot would 

strike a drum whenever the ESitar’s audio signal went over a set threshold.  

Finally a rhythm was introduced. The robot played a simple Tin Taal 

while the a composition by Vilayat Khan was performed on the ESitar. The 

challenge with the Tin Taal was for the performer to keep in time with the 

machine’s sixteen beats. The robot would accent the “one” by performing 

dramatic loud dynamic changes. The Tin Taal rhythm would vary based on the 

performer’s gestures, however more drastic variations need to be programmed in 

with more “intelligent” query mechanisms.  

The robot also performed a Kherva beat, as well as a tribal drum groove 

with many variations. The entire concert, the tempo would keep increasing and 

increasing controlled by a knob on the ESitar’s controller box. One challenge was 

getting the robot to switch to a new beat or even end a song. I practiced triggering 

the robots to stop (using a button) while playing a melody in time, but this has its 

difficulties during the performance, and a new system must be created. The robot 

also needs a call and response program. Another dream would be to build a stage-

ready system to gather rhythm from a human and store it in its “memory” 

database in real-time.         
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15.9 June 9th, 2007 – ESitar and MahaDeviBot 
Live in New York City 

The final concert before defending my dissertation was held at the International 

Conference for New Interfaces for Musical Expression (NIME) in New York City. 

Many improvements were made to the MahaDeviBot, including the addition of 

eight more arms, using the Trimpin Hammer and Trimpin BellHop mechanisms. 

These devices were much more stable, quiet, reliable, and professional looking. 

They were used to strike a variety of instruments including bells, shakers, wood 

shingles, gongs, and finger cymbals. This gave the entire robotic instrument a 

broader range of frequency and timbre. A head was also added to the 

MahaDeviBot, which could bounce up and down using a solenoid-based design. 

This allowed the human performer to visually comprehend the derived tempo of 

the machine.   

Curtis Bahn was invited to perform for this concert as he had built his own 

version of an ESitar as well as an Electronic Dilruba, which is bowed Indian 

instrument combining the characteristics of a sitar and a cello. Curtis created an 

electronic bow with a two-axis accelerometer. Accelerometer data from both 

instruments were used to query half of the rhythms performed by the 

MahaDeviBot.  

The composition began with an alap section introducing Raga Yaman as 

well as the electronics to the audience. Curtis had a variety of electronic sounds 

controlled by the bow which also controlled the delay lines of the audio from the 

Dilruba. The ESitar was used to control the “butterfly effect” program and gently 

move each of the parts on the MahaDeviBot, portraying to the audience that 

mechanics were being controlled by the hyperinstrument. The piece evolved to a 

Tin Taal Theka in which both performers played a Ghat by Vilayat Khan and 

traded solos. Sensor data from both instruments queried rhythmic variations. This 

sixteen-beat section ends abruptly, the musicians go silent, and all that is left is 
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the head of the MahaDeviBot bouncing up and down. Visually being conducted 

by the moving mechanical parts, the musicians come back in time, and the robot 

switches to the Kherva rhythm. MahaDeviBot, slowly increases its tempo as the 

jhala melodies become more developed and full. Electronics, harmonies and 

exotic interaction interchange until a fast Tihai is signaled to end the compostion. 

The robot successfully stops in time with performers, using signals from the 

sensor data (an upgrade from pushing a button). This was the final successful 

experiment of the entire body of work. A beautiful ending of one era, and 

beginning of the next.  

  
Figure 100 - Performance at New York University at the International Conference on New Interfaces 

for Musical Expression June 11, 2007.
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16 
16  

Conclusions 
Towards the age of the cultured machine 

 

ictorian painter Emily Carr once said, “Artist…there is no realization… 

only momentum towards fulfillment, something that indeed we cannot do 

individually, separately, only as a complete spiritual solidarity….” [19]. 

The body of work described in this dissertation was truly an artistic venture 

calling on knowledge from a variety of engineering disciplines, musical traditions, 

and philosophical practices. It also called on the collaborations and expertise of 

many professionals, professors and students. The goal of the work was to preserve 

and extend North Indian musical performance using state of the art technology 

including multimodal sensor systems, machine learning and robotics. The process 

of achieving our goal involved strong laboratory practice with regimented 

experiments with large data sets, as well as a series of concert performances 

showing how the technology can be used on stage to make new music, extending 

the tradition of Hindustani music. This concluding chapter will present what was 

learned from all our research and experimentation, including a summary of 

contributions, discussions on techniques, the challenges faced, the advantages and 

disadvantages of the interdisciplinarity of this work, as well as future directions.  

V
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16.1 Summary of Contributions 

This dissertation made contributions in the areas of musical gesture extraction, 

musical robotics and machine musicianship. However, one of the main novelties 

was completing the loop and fusing all three of these areas together. Using 

multimodal systems for machine perception of human interaction and training the 

machine how to use this data to “intelligently” generate a mechanical response is 

an essential aspect of human machine relationships in the future. The work in this 

dissertation presented research on how to build such a system in the specific genre 

of musical applications.  

Much of the research in the area of computer music has primarily been 

based on Western music theory. This dissertation fully delves into applying the 

algorithms developed in the context of North Indian classical music. Most of the 

key contributions of this research are based on exploring the blending of both 

these worlds.  

We presented the first hardware devices to capture traditional finger 

position and timing information for North Indian drumming, namely the tabla and 

dholak. We further extended this technology to create the first multiplayer Indian 

music performance system by networking two drums together. We created the 

first modified Indian classical string instrument to have sensors which capture 

performance gestures for archival of performance technique and used for creating 

modern multimedia concerts. We also conducted research using wearable sensors 

on the human performer to create a framework to obtain more information about 

how to preserve intricacies about the posture and performing technique from 

North Indian classical musicians.   

In the field of musical robotics, we presented the first mechanically driven 

drum machine to perform Indian classical rhythms for human-to-robot 

performances in conjuction with multimodal machine based perception. We also 
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included the first detailed experimentation and documentation on how to use 

solenoids for musical performance.   

We use machine learning and advanced signal processing techniques to 

further preserve and extend Indian classical music. We presented research on the 

first system for using multimodal acquisition for sitar performance for obtaining 

tempo-tracking information using a Kalman Filter. We presented a novel system 

to use retrieval techniques for generating robotic drumming accompaniment in 

real-time. We presented the first software to automatically transcribe performance 

of a sitar performer using multimodal acquisition methods. We also described the 

first method to create an audio-based “virtual sensor” for a sitar using machine 

learning techniques. Finally, we presented the first experiments on using motion 

capture data for machine-based emotion detection in the field of affective 

computing. 

16.2 Discussions on Techniques 

Through out the years of building this technology we have experimented with 

several sensors, microcontrollers, music protocols, music languages, sound 

mappings, graphical feedback mappings, robotic systems and machine 

musicianship techniques. The approach for all of these areas of research has 

evolved as we experimented with new approaches and techniques as each 

hardware device or software was created. This section presents a discussion on 

what was learned in each of these areas.  

16.2.1 Sensors  

We found that using FSRs on drum controllers did not obtain a quick enough 

response time, especially for Indian drumming, where finger strikes occur at a 

very quick rate. However, the gestural footprint obtained about force and position 

is very useful. Using piezo, we did not obtain enough information about force and 
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position, but the response time was fast enough for live performance. Thus using 

a combination of the two, as seen in the digital spoon of the EDholak is a perfect 

balance, where timing specific impulses can be triggered immediately and FSR 

readings can effect the other variables which are not so time dependent, but still 

expressive.  

Using simple circuitry and a few sensors as seen in the ESitar to obtain 

gestural data of a traditional instrument has also proved to be successful. This way 

a trained musician in the classical form of the instrument can easily perform with 

the digitized version and learn new techniques with more ease than with that of an 

acoustically quiet instrument, which models tradition, but relies on synthesis 

algorithms or samplers to generate sound.  

Further, using sensors on the body, as seen on the headset of the ESitar 

controller, and all the experiments with the KiOm and WISP, gathers extremely 

useful gestures which can be used to modify sound of a performer in real-time.  

Sensor calibration, which was also programmed for the ESitar was a very 

important addition, enabling a variety of users to easily set their minimum, 

maximum and average sensor values for successful mapping.  

Finally, sensors are very fragile and break with use over time. Thus 

designing robust systems for easy exchange of sensors saves a lot of frustration 

and time during sound checks.  

16.2.2 Microcontrollers  

Comparing the Parallax Basic Stamp IIsx, the Atmel AVR Atmega16, and the 

PIC microchip as microcontrollers for our technology, we prefer the PIC and 

Atmel. Programming in C as compared to PBasic (similar to Basic) allows for 

more complicated algorithms and onboard signal processing, which we would 

have not even tried to implement on a Basic Stamp IIsx. The fact that the Atmel 

code can be compiled using gcc allows development using Linux, Mac, and 

Windows. The eight 10-bit Analog-to-Digital converters, the faster processor 
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speed and other magic functions built in to the Atmega16 and PIC, also make 

them a logical choice for more complicated controllers which use more sensors 

and require more processing power.  

16.2.3 Music Protocols  

Converting the ESitar and WISP from communicating via MIDI to Open Sound 

Control (OSC) (Wright, Freed, Momeni, 2003) proved very useful for two reasons. 

First, we no longer had to down-sample our 10-bit Analog-to-Digital signals to 8-

bit MIDI data streams. Second, as the developing team were at geographically 

different locations, using the OSC protocol that was optimized for modern 

networking technology made it easy to send controller data from one location 

(namely British Columbia, Canada) to the other (New York City, USA) using the 

internet.  

16.2.4 Music Programming Languages 

The research described in this dissertation used a large number of music 

programming languages to achieve a variety of tasks. Namely, MAX/MSP, pure 

data, ChucK, STK Toolkit and Marsyas were used (more information on each 

language available in Appendix E). From our experience, one must choose the 

right tool for the right job. If one wants to program a physical model of a sitar 

from scratch, then using STK Toolkit would be an obvious choice as the 

framework is completely set for that type of application. However, if one only 

wants to map controller data to parameters of a physical model, then using 

MAX/MSP, pure data or ChucK would all be appropriate choices based on 

personal preference. As of today, Marsyas proved to be the strongest language for 

doing detailed analysis of signals because of its large set of feature extraction 

algorithms, graphing tools, and ability to handle signals at different sampling rates. 

For live performance, most work was done first in pure data. We tended to 

choose academic software which is freely available and open source over 
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commercial programs such as MAX/MSP. MAX/MSP has the advantage of having 

a very large user base with many advanced features created by the community, 

however because the goal of our work is to share it with musicians in India, we do 

not want the high price of software to limit the accesiblity of our work.  

Over the last three years, we have converted all our live performance code 

to ChucK as we believe it has the framework to help change the future of 

computer music systems. One of the strongest aspects of the language is its 

correlation to real programming, with its types, variables, arrays, operators, 

control structures, functions, and class structures. Thus, a student who has never 

learned how to program will have a much stronger understanding for real 

programming then by connecting lines to various boxes. One can also manipulate 

time very easily in ChucK using the “now” functionality and the use of shreds to 

control specific tasks that can be concurrently started and stopped at any time. 

The use of classes in the ChucK is also useful for group collaboration and 

development. Each controller built has a separate ChucK class, which can be 

easily shared and updated modularly. The ChucK KiOm class was jointly 

developed by the MISTIC team over a period of three months, where each 

member added the desired functionality through experimentation and experience.  

 

16.2.5 Controller Sound Mapping  

Correctly mapping the gestural signals obtained from the controllers is essential in 

producing meaningful sound that expresses the performers feelings.  

Our first experiments with the ETabla were to trigger physical models of a 

Tabla using STK Toolkit. While we were very impressed with results of the sound 

and expressiveness, the time delays were too great for faster Indian rhythms. The 

ETabla MIDI signals also trigger sounds on any digital or analog MIDI sampler, 

such as the one on the Roland Handsonic. Thus an experienced tabla player can 

easily use their years of experience and training to trigger a myriad of different 
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sounds such as congos, djembes, bells, pot drums, and drumsets, using the ETabla. 

For a beginner tabla player, creating sounds such as a “Na” on a real tabla is very 

difficult and de-motivating. With the ETabla, a beginner can start creating sounds 

immediately giving them positive feedback to keep working on rhythm, theory, 

and finger strength.  

One observation from the ETabla experiments was that simply triggering a 

single sound from a MIDI soundbank became very boring during performance. 

This motivated separating the rhythm making process from the sound production 

process in the creation of the EDholak. With this controller, one person supplies 

the beat while another musicians sole purpose is to modify the sounds being 

triggered, adjusting parameters such as the soundbank, pitch, color, depth, and 

pan. This proved to be very effective in performance space as deeper emotional 

content could now be expressed with the controller. Also, having software such as 

the EDholak MIDI Control Software to organize the order of desired soundbanks 

and different parameters of a sampler makes performances easier and allows the 

musician to focus on the music rather than memorizing where a specific patch is 

located.  

We took a completely different approach in mapping sounds for the ESitar. 

The ESitar is the only instrument of the set that is not acoustically quiet when 

played. Thus we are modifying the sound of the real instrument, using the gestural 

data deduced from the microchip. We used pure data to achieve effects such as 

ring modulation, delays, additive synthesis, and sympathetic pitch, which overlay 

on top of the acoustic sound of the sitar during performance. Lately, we have been 

using ChucK to control MIDI messages in conjunction with commercial software 

such as GuitarRig and Ableton Live.  This proved to be an easy way to obtain 

professional sound in a short amount of time. This method seems to fully keep the 

tradition of sitar performance intact while adding modified techniques using a 

computer. In the future, we will try to combine this method with physical 

modeling.  
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Further, with the ESitar, mapping was successful due to code written to 

record synchronized audio and gestural data, enabling the user to record a 

performance and then playback all the data, tweaking parameters to obtain desired 

effects and sound synthesis. Using ChucK and other languages of this nature, 

which allows full control in designing sound patches that can be customized to the 

performer’s dreams, a user can utilize far more interesting synthesis techniques 

that are impossible to achieve with any sampler/sequencer. 

  

16.2.6 Graphical Feedback  

We render graphical feedback for the all the controllers using custom built 

software veldt (Davidson, Kapur, Cook 2003). Veldt is an application that was 

designed from the ground up for the purpose of visual expression and 

performance. We used veldt to generate graphical meaning, such as rhythmic 

impulses from the ETabla and EDholak, and melodic transcription from the 

ESitar. The incorporation of visual feedback in concert performance can provide 

the audience with another means of conceptualizing their experience of it, and an 

additional means of becoming actively engaged with the artist’s performance. 

Beyond the context of concert performance, our system can also be used in a 

pedagogical context, allowing a student to receive a variety of feedback and 

coaching while learning to play these instruments.  

 

16.2.7 Robotic Music  

Overall, our main motivation in using a robotic system was our discontent for 

hearing rhythmic accompaniment through a set of speakers. In is our opinion, 

triggering pre-recorded samples does not have enough expressiveness, and 

physical models to-date do not sound real enough. However, having a machine 

perform acoustic instruments using mechanical parts has its disadvantages. We 
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must tune the machines’ instruments for every show, which would not be 

necessary if we were just triggering “perfect” samples. Also, because of the nature 

of any mechanical system, there are imperferctions in event timings based on 

varying spring tension, speed and strength of previous strikes. However, this 

produces more realistic rhythms, as humans also have imperfections when 

actually “grooving”.  

Our experimentation with robotic systems for musical performance 

brought many familiar yet new challenges to working with sensors. A set of allen 

wrenches, screw drivers, plyers, a calliper and a dremel are carted to each 

performance along with a box set of extra springs, screws, washers, and spare 

parts. Our first designs had frameworks made of wood. This obviously is too 

heavy a material, and using aluminum is ideal because of its sturdiness and light 

weight. However, we learned from our initial prototypes that welding anything 

would be a mistake. All parts should be completely modular to allow for changes 

in the future. Thus designing our robots out of 20/20 T-slotted aluminum was a 

perfect material to accomplish all our goals of sustainability, modularity, mobility 

and professional appearance.      
 

16.2.8 Machine Musicianship Techniques 

The machine musicianship algorthims we have experimented with are still very 

primitative. We use machine learning techniques to help classify gestures and 

sounds into categories to help begin training a machine to “hear” as humans do. 

We even show how a computer can use machine learning to “hear” more details 

than a human in our regression experiments to create “virtual sensors”. Using 

advanced digital signal processing techniques like the Kalman filter and pitch 

tracking we have shown how the machine can track tempo and automatically 

transcribe music with more information from a variety of sensors. This validates 

our building the ESitar, KiOm and WISP for preservation applications. However 
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all our work in this domain has not been implemented in real-time and has another 

revolution before it will be stage-ready.  

 

16.2.9 Power 

A constant challenge in building all the hardware devices has been powering the 

electronics. The ETabla and EDholak used 9 volt batteries which stuck out of 

their encasements. These always presented the danger of being accidently 

knocked off during performance. In addition, extra batteries would have to always 

be on hand, and a voltmeter to determine how many volts were left in each battery 

before performance. This motivated designing the ESitar with a 9-volt power 

supply that plugged directly into the wall. However, this presented the 

disadvantage of having yet another cable to set up. When beginning to design 

wearable technology it seemed that using batteries would make the systems more 

accessible. Switches were created on each KiOm so each user could conserve 

power. However, the 9-volt battery was the largest component in the KiOm, as 

well as the heaviest. The WISP addressed this issue by using a 3-volt lithium 

battery, but this was only achievable by having a USB powered wireless station 

which then sent gesture messages to the machine, and not a standard direct MIDI 

connection which will always take 5-volts. For the MahaDeviBot, each solenoid 

could draw from .75 to 1.5 amps of current. The power supply had a 3 amp rating, 

meaning that only 2 to 4 solenoids could be triggered at the same time. Also the 

MacBook Pro which is being used to run the software gets unbelievablely hot, due 

to power. Of course, the faster the machine, the hotter it gets. These combined 

problems have influenced the author to learn more about solar cells and other 

methods of producing sustainable energy for artistic pursuits.       
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16.2.10 Evaluation 

A key concept through out this work has been finding methods for evaluating the 

success of our algorthims and techniques. We presented user studies on how an 

expert Tabla performer could use the ETabla. We presented our evaluation 

methods on the dynamic range and speed of the various solenoid designs of the 

MahaDeviBot. We also presented detailed analysis for each machine musicianship 

technique, especially in testing the success rates of various machine learning 

techniques. Evaluation is essential laboratory practice in the process of improving 

technique and allowing our research to grow beyond our laboratory and have 

global impact.    

 

16.2.11 Preservation and Pedagogical Tools 

The key goal of this research has been to build technology to aid in preservation 

of North Indian classical music. We have presented methods for recording 

synchronized data beyond just the audio signal, capturing more intricate gesture 

information from the master performing artist. It is also our goal to build 

pedagogical software to aid in more accessible and efficient means of 

dissemination of traditional techniques. In India, when one learns from a master, 

it is common to not be allowed to record the lesson, or even take written notes. 

One must only learn what one can obtain during that given time, by repeating 

even one phrase over and over to perfection. The student then goes to do their 

own riyaz (rehersal), until the meeting the next day. This system can work 

wonderfully well, but is restricted to only those who live in India near the masters. 

This research is presenting methods for globalization of this information, by 

building tools which can aid in bringing that knowledge from India and allowing 

students who live in North America, Europe, and other parts of the world to have 

equal access and opportunity to lessons from the masters.  
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16.3 Challenges of Interdisciplinary Research 

There have been many challenges in handling the interdisciplinarity of this 

research. Firstly, having a large number of advisors is certainly fruitful in 

gathering a number of prospectives, but can be difficult when each has their own 

agenda for what direction the Ph.D. student should follow. Also, having to take 

courses in five subjects is difficult as one must learn the basics for each subject 

matter before being able to understand the full magnitude of the advanced courses. 

For example, when taking advanced digital signal processing, I would 

simultaneously go to the beginner level classes on signal processing to catch up 

on the material. The courses in mechanical engineering and psychology held 

similar difficulties. 

Each discipline studied had its own interdisciplinarity forming a multi-

level staircase of knowledge and/or confusion. In computer science, I had to learn 

all the music programming languages as discussed including ChucK, Marsyas, 

STK Toolkit, MAX/MSP, pure data, as well as the general languages like 

MATLAB, Basic, C, C++. To make matters even worse, different programs had 

to be run on different platform so I constantly had a machine for Windows, Linux 

and Mac OSX. It is impossible to remember all the details of each language and 

platform, so deriving methods of notes and quick look up tables of information 

was key to success. Electrical engineering held its own challenges. Signal 

processing algorithms first had to be coded off line, then converted to real-time, 

and then some had to be converted to work on board a microchip. Even the 

microchips used in this work were multi-dimensional, as we experimented with 

PIC, Atmel, and Basic Stamps. In mechanical engineering, the greatest challenges 

lay in the number of tools one had to learn to get a job done. I learned how to use 

a mill, lathe, drill press, dremel, as well as simple tools like a caliper. 

The music component of this research held the most challenges. It was 

imperitive to practice everyday. But even here there were so many instruments to 
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practice including ESitar, Etabla, EDholak, KiOm, etc. To make it even worse, 

the instruments would keep changing as new software and hardware would be 

added. Performances took the most amount of energy. Anything that could go 

wrong would gone wrong, and learning to be prepared for the worst is the only 

way to be successful in using custom hardware on stage. Sensors and solenoids 

sometimes break, wires sometimes come loose, and even software sometimes 

crash (especially ones you did not program yourself!). Building sturdy 

transportation cases for the instruments proved to solve some issues, however 

when flying through the USA, one never knows what homeland security is going 

to open up and break. Only luck is involved here and good karma.  

One of the main disadvantages of interdisciplinary study is that one does 

not become an expert in one discipline. Despite this fault and all the challenges 

there are many advantages that could not happen without interdisciplinarity. The 

very fact that there is not one discipline means that there is not a set of pre-

composed rules or tradition of how research should be administerd. This allows 

for new research and in our case, the creation of new music and novel expressions 

for artistic endeavors. The successful interdisciplinary scholar quickly learns that 

they themselves cannot be the best at everything and will need the help of many 

specialists. Thus a key skill to acquire is social networking, collaboration, and 

leadership. Finally, the successful interdisciplinary scholar must learn to be 

efficient, manage time, organize workflow, schedule deadlines, and prioritize 

each moment. 

16.4 Future Work 

Future work includes a variety of directions. Overall, the technology built needs 

to be performed by masters in India, capturing data for analysis and preservation. 

Using the tools for pedagogical means has always been the chief motivator. 

Developing the technology into robust systems that can be used by novice 
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students with sleek GUI interfaces is a first step to accomplishing this goal. 

Further collaborating with professors, engineers, artists, musicians, and students 

will let this work breathe and take on a life of its own. I hope the future will allow 

those interested in becoming a master performer in North Indian music to use this 

technology and reach high heights in a shorter period of time. Also, as the 

technology progresses it is my dream to spawn new musical ideas and genres 

continuing to evolve North Indian music and computer music to new heights.  
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A                                                                          
An Introduction to North Indian 
Classical Music 

   Raga, Theka, and Hindustani Theory 

 

nce, a long time ago, during the transitional period between two Ages… 

people took to uncivilized ways … ruled by lust and greed [as they] 

behaved in angry and jealous ways, [while] demons, [and] evil spirits… 

swarmed the earth. Seeing this plight, Indra (The Hindu God of thunder and 

storms) and other Gods approached God Brahma (God of creation) and 

requested him to give the people a Krindaniyaka (toy) … which could not only be 

seen, but heard, … [to create] a diversion, so that people would give up their bad 

ways.” [39] These Krindaniyakas which Brahma gave to humans included the 

Indian classical instruments used to perform Hindustani music. 

Music is a medium to express emotional thought and feeling through “tone 

and time” [7]. Traditionally, these sounds are portrayed using rhythm, melody and 

harmony. In the case of Indian Classical music that is monophonic in nature, only 

rhythm and melodic formulas are used to express the emotions of the musician. 

This chapter serves as an introduction to Indian classical music theory. There are 

two systems of Indian classical music: Hindustani from the North, and Carnatic 

from the South. Though there are many similarities between the two systems, this 

O
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chapter will focus only on North Indian Classical music, which serves as the rules 

and traditional theory used for this dissertation.    

A.1 Nad 
Nad is a Sanskrit word that translates to “sound in its broadest sense usually 

conceived in metaphysical terms as vital power” [7].  Musical sounds have four 

characteristics: pitch, timbre, duration, and intensity. Pitch corresponds to 

frequency that is determined by the number of vibrations per second a wave 

propagates through the air. Timbre is described as the quality or character of a 

sound. Duration is defined as the time period of a sound. Intensity is defined as 

the strength of a sound.  

In North Indian classical music, musical notes are described through seven 

main swara-s. They are known as: Shadja (Sa), Rishab (Re), Gandhar (Ga), 

Madhyam (Ma), Pancham (Pa), Dhaivat (Dha), and Nishad (Ni). Figure 101 

visually represents these seven swara-s using a keyboard diagram, based on a C 

Scale42. One can equate these seven swara-s to the western solfege system (Doh, 

Re, Mi, Fa, Sol, La, Ti). 

 
Figure 101 - The seven main swara-s shown using a C Scale. 

By examining Figure 101, one can observe that there are black keys in-

between Sa-Re, Re-Ga, Ma-Pa, Pa-Dha, and Dha-Ni. There is no black key in-

between Ga-Ma and Ni-Sa. The black keys allow for vikrit swara (altered notes). 

Shuddha swara refers to pure, the natural notes described so far. It is possible to 
                                                 

42 Orthodox Hindustani music cannot be performed on a harmonium or piano as the notes are set 
in place and not flexible based on raga.  
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make a note flat (komal) or make a note sharp (tivra). It is possible to have a 

komal Re, Ga, Dha, and Ni, which are notated by underlining the swara as 

follows: Re, Ga, Dha, and Ni. It is possible to have a tivra Ma, which is notated 

with a small mark over the a as follows: Må. Both Sa and Pa are fixed with no 

vikrit form, known as achal (immoveable swara). Higher and lower octaves are 

denoted with a o above and below the swara as follows: Soa and Soa. The human 

vocal range covers three octaves: mandra (low), madhya (middle), and tar (high). 

Some string instruments can perform notes in the lower register known as ati-

mandra, as well as the highest register known as ati-tar. Figure 102 portrays the 

twelve basic swara-s in more detail. 

Full Name Short Name Hindi 

Script 

Solfege 

System 

Scale of C 

Shadja Sa  Doh C 

Komal Rishab Re   Db

Rishab Re  Re D 

Komal Gandhar Ga 
 

 Eb

Gandhar Ga 
 

Mi E 

Madhyam Ma 
 

Fa F 

Tivra Madhyam Må 
 

 F#

Pancham Pa 
 

Sol G 

Komal Dhaivat Dha 
 

 Ab

Dhaivat Dha 
 

La A 

Komal Nishad Ni 
 

 Bb

Nishad Ni 
 

Ti B 

Shadja Soa  Doh C 

Figure 102 - Notation of 12 basic swara-s. 
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Each of the twelve swara-s also have an infinite number of frequencies in-

between each interval. These are referred to as shruti, or microtones. “Shru” 

literally translates to “that which is audible”. Because of the anatomy of the 

human ear, it is possible to hear only twenty-two discrete frequencies between 

each set of intervals. Thus there are twenty-two shrutis that come into play in 

North Indian Classical music. The use of these microtones are one of the 

characteristics that separate Indian music from other music in the world, and 

provides a complex, colorful palette for the true artist to use to draw subtle and/or 

extreme emotional content [7]. 

A.2 The Drone 
Indian classical music is based on musical modes, where the meaning of each note 

is determined by its relation to the adhar swara (ground note). In western music, 

this is known as the tonic. This tonic, the Sa, is permanently fixed throughout the 

performance, setting a base foundation from which the melodies arise.  

The tanpura is an instrument that has evolved over centuries, and is used 

to provide the drone for Indian classical performance. As shown in Figure 103, it 

has a hemispherical base made of a large hollowed out gourd (known as the 

tumba) which acts as the sound box and resonating chamber. The top of the gourd 

is an open surface, covered by wood, acting as a resonating plate (known as the 

tabli). The Dand is the stem, emerging out of the tumba, also hollow and serving 

as a resonating column.  
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Figure 103 - The Tanpura and names of the parts of the instrument [7]. 

 

There are four strings, three made of steel and one made of copper to 

create the lowest pitch. Strings are typically tuned to Poa Sa Sa Soa, but tunings 

change based on the raga being performed. There are four tuning pegs attached to 

four separate strings which extend from the tail piece of the base of the tumba 

(known as the langot), over the main bridge (ghori), along the dand, and over the 

meru (upper bridge) to the pegs. A performer tunes using the pegs, but can fine 

tune using tuning beads (known as manka) and jiva, which is silk, or cotton thread 

placed between the string and bridge, cushioning and affecting vibrations. The 

area where the strings meet the lower bridge is angled, giving the strings a larger 

degree of freedom to vibrate, creating the buzzing sound (known as jawari) 

uniquely characteristic of the tanpura [7]. 
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A.3 The Raga System  
The raga system in Indian classical music is the melodic form encompassing 

tonality, frequency, scale and the relationship between pitches. Each raga evokes 

a particular mood in the performer and listener.  

There are two basic movements within any scale (saptak): (1) Aroha 

which is an ascending or climbing movement, and (2) Avaroha which is a 

descending or falling movement. Every raga is defined by a fixed set of 

unchangeable notes, and an ascending and descending order to which these notes 

can be performed.   

A listener may still not be able to recognize a raga, even when knowing 

the notes, the aroha and the avaroha, because there are many ragas that use the 

same structure. A listener must distinguish a raga from the context and manner in 

which notes are used, which notes are stressed (vadi and samvadi), how notes are 

intonated, how shruti-s are incorporated, and by certain key phrases which 

indicate a particular raga. All of these attributes combined in a musical 

performance comprise a traditional raga. This is why this theory can only be 

learned by meditative hearing and repetition.   

North Indian music has a number of guidelines which are used to define a 

set of notes as a raga. Firstly, each raga must have at least five notes. Secondly, 

each raga must have a Sa as the fundamental and cannot omit the Ma and the Pa 

simultaneously. A raga must use the full range of an octave, employing both tetra 

chords. The raga cannot take the shuddha and vikrit form of a note consecutively, 

however, one form can be used in ascending and another in descending. To clarify, 

a raga may have a komal Ga in the ascending scale, and a shuddha Ga on the 

descending, but both Ga and Ga cannot be in the ascending.  There are also many 

aesthetic potentialities of a set of notes. There is a specific ornamentation, 

incorporating shruti (microtones) in the correct manner. The most important is the 

general rules about melodic movement by incorporating correct use of aroha and 

avaroha.  
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A raga which has five notes or pentatonic is known as audav, hexatonic is 

shadav, and heptatonic is sampurna. Jati is the name given to raga-s which have a 

different number of notes ascending as descending, for example audav-shadav, 

has five notes in aroha and six notes in avaroha. Further, the aroha and avaroha 

can be straight or twisted (vakra) [7]. 

A.3.1 Pakad 
Pakad is the a term referring to the characteristic phrase which helps identify and 

define a raga. It is a catch phrase which is repeated several times through a piece 

for recognition. Synonyms for pakad in Hindi include mukhya, anga, and swarup 

which all mean main aspect or main form. However, it must be noted that not all 

raga-s have a pakad. “In reality such phrases are very arbitrarily chosen by the 

authors…The truth is that there is not one single catch-phrase nor any definite 

number of phrases that form the core of a raga, because a raga is a fluent and 

dynamic whole [111]”. 

A.3.2 Vadi & Samvadi 
In Indian classical music, each note does not have equal importance. This does 

not mean in terms of volume but rather in frequency of usage and relevance to 

defining a raga. The vadi is the most significant note where as the samvadi is the 

next significant. Anuvadi are the all the residual notes of the raga of less 

importance, where as vivadi are the set of prohibited notes not part of the raga.  

The vadi is used frequently to start and end particular phrases. It is also 

important in determining the mood of a raga, by dwelling on it for a long time, 

elaborating its importance and its relation to the tonic. The vadi also plays a role 

in determining the time of day when a raga is performed by its position in the 

scale. In performance, the rhythmic accompaniment also helps stress the 

importance of the vadi by using more elaborate rhythmic patterns.  
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The samvadi serves to highlight the importance of the vadi. It is always 

found in the other tetra chord, usually in the same corresponding position within 

the four note set of the tetra chord [7]. 

A.3.3 Varna 
 There are five types of melodic movements (varna) in Indian classical music.  

Sthayi describes stability and permanence, where notes are continuously held, 

with small phrases in between starting and ending on the same note. Arohi has 

been described above as ascending melodic movement, and Avarohi describes 

descending melodic movement. Sanchari is the term used for meandering 

between ascending and descending motifs. Vidari describes melodies that are 

discontinuous. The distinctions in these five classes of varna are portrayed in a 

performer’s use of tans [7]. 

A.3.4 Tan 
A tan is a group of notes used to expose and expand a raga. The word comes from 

the root tanama, which means to stretch. Tans are generally performed at a fast 

tempo, at least twice the speed of the tempo of the melody. Dugani refers to when 

a tan is performed with two notes per beat (also known as eighth notes). Tiguni 

refers to three notes per beat (triplets) and chauguni refers to four notes per beat 

(sixteenth notes).  

There are three basic types of tans. A sapat tan is straightforward, playing 

a series of notes in order such as Ni, Dha, Pa, Ma, Ga, Re, Sa. A vakra tan is a 

twisted melody that goes up and then down in one phrase like a rollercoaster. 

Alankar refers to pre-rehearsed patterns which generally incorporate the use of 

scale exercises. Some of these patterns are particular to a family and style of 

playing.  
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A.3.5 Ornamental Devices 
 A key aspect of Indian classical music is the way in which each individual note is 

ornamented using microtones and advanced performance techniques. This is the 

tonal grace of gliding from one note to the next and the subtle art of using 

frequencies just above and below the primary note.  

There are a variety of ornamental devices. Mindh refers to technique of a 

slow glide connecting two notes, where both notes are equally important. Kana is 

a shadow or grace note of less intensity and duration before a primary note being 

stressed, similar to a glissando in Western music. Murki is a quivering trill around 

a main note incorporated frequencies just above and below the principal note. 

Gamak refers to heavy fast shaking of a note. Kampan is a fast oscillation 

between notes, resulting in a slight alteration in pitch. Andolan refers to a slow 

gentle oscillation between notes [7]. 

A.3.6 Thaat system 
The Thaat system was introduced by Pandit Vishnu Narayan Bhatkhande (1860-

1936) to classify ragas into parent-scale modes. Thaat-s are basic patterns of 

seven-note arrangements creating a classification scheme to group several ragas 

under one “mode type”. In every thaat there is one raga that bears the name of the 

thaat, while others are derived by dropping one or more notes from the parent-

scale.  

The melakarta raga system in South Indian Carnatic music theory derives 

the combinations of twelve notes into seventy-two mela-s or arrangements. This is 

a fool-proof framework to classify all the raga-s that can possibly exist. In 

contrast, Pandit Bhatkande’s thaat system, only classifies prevalent raga-s into ten 

subcategories. Figure 104 portrays the ten thaat-s, their corresponding notes, and 

their equivalent relation to the Western modal system.  
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Thaat Notes Western Mode 

Bilawal Sa, Re, Ga, Ma, Pa, Dha, Ni, Soa Ionian 

Kalyan Sa, Re, Ga, Må, Pa, Dha, Ni, Soa Lydian 

Khamaj Sa, Re, Ga, Ma, Pa, Dha, Ni, Soa Mixolydian 

Bhairav  Sa, Re, Ga, Ma, Pa, Dha, Ni, Soa  

Purvi Sa, Re, Ga, Må, Pa, Dha, Ni, Soa  

Marwa Sa, Re, Ga, Må, Pa, Dha, Ni, Soa  

Bhairavi Sa, Re, Ga, Ma, Pa, Dha, Ni, Soa Phrygian 

Asavari Sa, Re, Ga, Ma, Pa, Dha, Ni, Soa Aeolian 

Kafi Sa, Re, Ga, Ma, Pa, Dha, Ni, Soa Dorian 

Todi Sa, Re, Ga, Må, Pa, Dha, Ni, Soa  
Figure 104 - Thaat system. with appropriate scales. 

 

There are many shortcomings of this system. Firstly, some ragas are 

borderline and can be classified as two different thaat-s, as there are not enough 

thaat-s to classify all raga-s. Also, thaat-s do not preserve information on how 

notes are stressed, ornamentation, and key elements which make raga-s unique. 

Thus, this system is not widely accepted in India, and is only described to show 

some connection to Western modal music [7]. 

A.3.7 Raga and Emotion 
As mentioned above, each raga depicts a certain mood and emotion when 

performed. One exotic tale describes the performance of Raga Dipak lighting 

lamps on fire, as well as the performer themselves! “Gopal Naik, commanded by 

the Emperor Akbhar, … sang Raga Dipak but was saved from death by burning, 

as his wife, realizing the danger, immediately began singing Raga Malhar in 

order to bring down the rain  [7]”. 

The rasa theory arose within the context of drama. It refers to the aesthetic 

experience and emotional response of the audience during a performance. There 

are nine rasa states in which to categorize all raga-s: shringara (romantic/erotic), 
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haysa (comic), karuna (pathetic), raudra (wrathful), vira (heroic), Bhayanaka 

(terrifying), bibhatsa (odious), adbhuta (wonderous), shanta (peaceful, calm). [7] 

A.3.8 Ragas and Time 
One aspect of North Indian raga music that distinguishes it from Carnatic music is 

that traditionally each raga is associated with a time of day or time of year. The 

raga-s linked with a season are described in Figure 105.  

 

Raga Season 

Hindol Spring 

Malhar Rainy 

Dipak Summer 

Megh Monsoons 

Bhairav Autumn 

Malkauns Winter 
Figure 105 - Chart of Raga-s corresponding to Season (Time of year). 

 

Raga-s are also linked with the time of the day. These are based on a raga-

s connection with mood, the notes present, the tetra chord to which the vadi 

belongs, and the note hierarchy. For example, tivra Ma is used at sunset or at 

night; thus, as the sun sets, Ma turns to Må. It is also common that raga-s 

performed at dawn contain a Re, and occasionally Dha. Figure 106 shows a chart 

relating raga-s and thaat-s to time of day. Many of the raga-s listed in this chart 

are not found in this dissertation and the reader is pointed to an online source for 

easy access to more information about each raga43 [7]. 

 

 

 

 
                                                 

43 Available at: http://www.itcsra.org/sra_others_samay_index.html (January 2007) 
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Time of Day Thaat Raga 

Bilawal Alahya Bilawal, Shuddh Bilawal, Devgiri Bilawal, Shukla Bilawal 

Bhairav Bhairav, Ahir-Bhairav,Ramkali, Jogiya, Bhairav-Bahar, Gunakari, Vibhas 

Bhairavi Bhairavi, Bilakhani Todi, Bhupali Todi 

6-9 a.m. 

1st Quarter  

of Day 

Kalyan Hindol 

Todi Miya-ki-Todi, Gurjari Todi 

Asawari Asawari, Komal Re Asawari, Jaunpuri, Deshi, Sindh Bhairavi  

Kafi Sughrai, Sur Malhar 

9 a.m. - noon 

2nd Quarter  

of Day 

Bilawal Deshkar 

Kafi Brindabani-Sarang, Shuddha Sarang, Bhimpalasi, Dhanashri, Pilu, Suha Noon - 3 p.m.  

3rd Quarter  

of Day 

Kalyan Gaud-Sarang 

Purvi Purvi, Purya-Dhanashri, Shri, Triveni 

Marwa Marwa, Purya 

Todi Multani 

3-6 p.m.  

4th Quarter  

of Day 

Kafi Pat-Manjari 

Kalyan Yamen, Bhupali, Shuddha Kalyan, Hamir, Kedar, Kamod, Chhaya-Nat, 

Malashri 

6-9 p.m.  

1st Quarter  

of Night Bilawal Hansadhwani 

Bilawal Shankara, Durga, Nand, Bihag 

Khamaj Khamaj, Jaijaiwanti, Desh, Ragashwari, Tilak Kamod, Jhinjhoti, 

Kalawati, Bhinna Shadja, Gara, Tilang 

9 p.m. - midnight 

2nd Quarter  

of Night 

Kafi Kafi, Bageshwari, Malhar, Miya Malhar, Gaud Malhar 

Kafi Bahar, Kanada, Nayaki Kanada, Kaunsi Kanada 

Asawari Darbari Kanada, Adana, Shahana Kanada 

Midnight- 3 p.m. 

3rd  Quarter  

of Night Bhairavi Malkauns 

Purvi Basant, Paraj 

Marwa Sohoni, Lalit, Bhatiyar, Bhankar 

3 - 6  p.m.  

4th Quarter  

of Night Bhairav Kalingda 

Figure 106 - Chart describing correspondence between Raga-s, Thaat-s and time of day [7]. 

 

A.4 Theka 
Rhythm lays the framework for all music, arranging sound events over time. The 

traditional drum of North Indians music that provides rhythm is known as the 

tabla. Musical enhancement is the major role of the tabla in Hindustani music. 

Theka, which literally means “support”, is the Indian word for simple 

accompaniment performed by a tabla player. The importance of the theka 

underscores the role of the tabla player as timekeeper. An even more specific 
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definition of theka is the conventionally accepted pattern of bols which define a 

tal. The word tal literally means clap, for the clapping of hands is one of the 

oldest forms of rhythmic accompaniment [39]. 

The most fundamental unit of this rhythmic system is the matra, which 

translates to “beat”. In many cases the matra is just a single stroke. Just as 

sixteenth, or eighth notes maybe strung together to make a single beat, so too may 

several strokes of tabla be strung together to have the value of one matra. The 

next higher level of structure is vibhag, which translates to “measure” or “bar”. 

These measures may be as short as one beat or longer than five. Usually, however, 

there are two, three, or four matras in length. These vibhags are described in 

waves or claps. A vibhag which is signified by a clap of the hands is said to be 

bhari or tali. Conversely, a vibhag which is signified by a wave of the hand is said 

to be khali [39]. Whereas in Western classical music there are usually an equal 

number of beats per measure (3-3-3) or (4-4-4), it is common in Indian Classical 

music to have a different number of matras per vibhag such as (2-3-2-3) or even 

(5-2-3-4) [7].    

The most common theka is known as Tin Taal (which translates to “three 

claps”), where there are 16 matras, divided into four vibhags. Its arrangement is: 

Clap, 2, 3, 4, 

Clap, 2, 3, 4, 

Wave, 2, 3, 4, 

Clap, 2, 3, 4, 

The first line is the bhari vibhag, the third line is a khali vibhag, where as 

the other two lines are tali vibhags. In performance, the cycle of sixteen beats is 

repeated over and over. This cycle, known as avartan, refers to the highest level 

of conceptual rhythmic structure. The repetition of the cycle gives special 

significance to the first beat. This beat, known as sam, is a point of convergence 

between the Tabla player and the melodic soloist. Whenever a cadence is 

indicated it usually ends on the sam, with the soloist landing on the vadi or 
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samvadi. This means that the sam may be thought of as both the beginning of 

some structures as well as the ending of others [39]. The khali plays an important 

role, warning the soloist of the approaching sam.  

The mnemonic syllables, known as bol, represent the various strokes of 

the Tabla, which are described in Chapter 5. Figure 107 represents a chart of most 

common theka-s.   

Theka Matras Vibhag 

Division

Bols 

Dadra 6 3-3 Dha Dhin Na | Dha Tin Na 

Rupak 7 3-2-2 Tin Tin Na | Dhin Na | Dhin Na 

Kaharwa 8 2-2-2-2 Dha Ge | Na Ti | Na Ke | Dhin Na 

Jhap-tal 10 2-3-2-3 Dhin Na | Dhin Dhin Na |  

Tin Na | Dhin Dhin Na  

Dipchandi 

tal 

14 3-4-3-4 Dha Ge - | Dha Ge Tin - | 

Na Ke - | Dha Ga Dhin -  

Tintal 16 4-4-4-4 Dha Dhin Dhin Dha | Dha Dhin Dhin Dha | 

Dha Tin Tin Na | Na Dhin Dhin Dha 
Figure 107 - Common Thekas with Bol patterns [7]. 

  

A.4.1 Laya  
Laya refers to the tempo and pulsation of music. A performance begins with alap, 

where the soloist introduces each note in the raga one at a time. The melodic rules 

of the raga are revealed, one by one, slowly rising from the lower octaves to the 

upper octaves. There is no accompaniment by a percussion instrument in the alap. 

However, meter is certainly present at a very slow tempo.  

There are three main tempos in Indian classical music: Vilambit (slow; 30-

60 BPM), Madhya (medium; 60-120 BPM), and Drut (fast; 120-140 BPM). The 

alap is followed by a vilambit ghat (composition), accompanied by tabla, with 

improvisations. The music increases in intensity moving to Madhya laya with a 
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new ghat, and finally drut laya. Ghat-s at all laya are intertwined with tan-s 

presenting the soloist’s skill and improvisation ability.  

A tihai, a pattern repeated three times ending on the sam, helps transitions 

between sections, end improvisations, and prepares cadences. A chakradhar is 

similar to tihai-s, but generally is longer in length, is more climactic, and is used 

in the drut laya, ending on the sam.  
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B 
B                    

Physical Computing 
              Using Sensors & Microcontrollers 

 

his chapter gives an overview and brief explanation of the technology 

used to build systems for capturing non-trivial musical data from the a 

performing artist. It is a subset of a larger field known as Human-

Computer Interfaces (HCI) or more recently referred to as Physical Computing. 

This chapter will first define a microcontroller and its basic functionality. Next, a 

variety of sensors will be described which were used in this research. Next, there 

is a section describing a variety of actuators including motors and solenoids, with 

basic circuit diagrams. The chapter ends with a description of common music 

protocols used to communicate information from the microcontrollers to the 

laptop.  

T

B.1 Microcontrollers 
Microcontrollers are small, low-cost computers, designed to accomplish simple 

tasks on programs loaded in Read Only Memory (ROM). Microcontrollers are the 

electronic heart of the music controllers and robotic systems designed for this 

research. “They act as gateways between the physical world and the computing 

world” [166]. 

Microcontrollers are very inexpensive, starting as low as $5 US, and are 

thus ubiquitous in their use. One can find microcontrollers in many common 
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devices such as cellular phones, digital cameras, mp3 players, washing machines 

and even advanced light switches. Microcontrollers have three main functions: 

receiving data from sensors, controlling simple actuators, and sending information 

to other devices. In this research, three types of microcontrollers were used: PIC 

Microchip, Basic Stamp and Atmel.    

B.1.1 PIC Microchip 
A large group of devices in this dissertation use a PIC Microchip44. Specifically a 

PIC 18f2320 is used. This model has many built in functions such as a variety of 

basic digital inputs and outputs, ten analog-to-digital converters, two pulse width 

modulation pins, and USART serial communication pins.  

Digital inputs are used to trigger events based on a high input or low input. 

The most common use of this function is for buttons and switches. Analog-to-

digital converters translate voltage readings from sensors to bits that 

microcontrollers can use to deduce continuous physical information.  

To control motors and solenoids, pulse width modulation (PWM) is used. PWM 

creates a varying output voltage. To understand how PWM works, a good analogy 

is turning a light switch on and off rapidly and evenly, which is equivalent to 

keeping a light constantly on at 50% of its full power. Similarly, a series of pulses 

is sent to the pin, and the average voltage is the resulting pseudo-analog voltage.  

The PIC 18f2320 is run at 40 megahertz using a crystal and appropriate 

capacitors to set the cycle time. The microcontroller runs the assembly code 

written into ROM which is flashed in using a microchip burner. For most projects 

described, all code is written in C which is compiled into assembly code before 

being burned onto the chip. 

The PIC 18f2320 can be run at variety of low current voltages. For the 

projects described in this research, because the MIDI protocol requires five volts 

                                                 
44 Available at: http://www.microchip.com (November 2006) 
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to one of the pins, the PIC is run on five volts using a 7805 voltage regulator.  The 

Pin Diagram is shown in Figure 108.  

 

 
Figure 108 - PIC 18f2320 Pin Diagram. 

B.1.2 Basic Stamp 
Some devices in this research use a Basic Stamp microcontroller. The Basic 

Stamp is a programmable micro controller, developed by Parallax45, Inc. There is 

a large variety of BASIC Stamps however devices in this research were first 

developed using the BASIC Stamp II (shown on left of Figure 109) and then 

upgraded to the BASIC Stamp IIsx (shown on right of Figure 109), which has a 

faster processing speed. 

 
Figure 109 - Basic Stamp II and Basic Stamp IIsx. 

 

                                                 
45 Available at: http://www.parallax.com (November 2006) 
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The BASIC Stamp is programmed by Windows software provided by 

Parallax. The programming language is PBASIC (Parallax BASIC) which is 

based on the BASIC programming language. Code is transferred from the 

computer to the powered BASIC Stamp via a serial port on the carrier board. The 

code is stored in the EEPROM memory after being tokenized. Programming 

elements, such as constants, comments, and variable names, are not stored in the 

BASIC Stamp, so descriptive names and comments are included in PBASIC code 

for devices. The BASIC Stamp II only has room for about 500 lines of code, 

executed at 4000 instructions per second, whereas the BASIC Stamp IIsx has 

room for 4000 lines of code, executed at 10,000 instructions per second. Thus the 

BASIC Stamp IIsx executes 2.5 times as fast for time sensitive commands. The 

author points readers to [166] and [181] for more details on implementation and 

projects using the Basic Stamp.  

B.1.3 Atmel 
The Atmel46 series of microcontrollers were also used during experimentation in 

this research. Specifically, devices in the research used an Atmel AVR 

ATMega16 microcontroller. The low-cost 8-bit microcontroller has eight built-in 

10-bit analog to digital converters as well as twenty-four general purpose digital 

I/O pins. The microcontroller is housed on an AVRmini development board to 

provide clocking, serial ports, connector access to the chip, power regulation and 

programming circuits. The microcontroller program, which reads ADC inputs and 

transmits MIDI messages, is written in C with the help of the Procyon AVRlib 

support library available at CCRMA. The author points readers to [196] for more 

details on implementation and projects using the Atmel for music applications.  

B.2 Sensors 
Sensors are a type of transducer which measure physical data from the world for 

machine perception. In my research, they serve as the machines’, eyes, ears, and 
                                                 

46 Available at: http://www.atmel.com (November 2006) 
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feeling receptors. This section describes common sensors used to obtain pressure, 

rotation, and position for music applications. Force sensing resistors, piezoelectric 

sensors and accelerometers are described.   

B.2.1 Force Sensing Resistors 
Force sensing resistors (FSRs) convert mechanical force into electrical resistance. 

FSRs used in this research are manufactured by Interlink Electronics47 and can be 

purchased at their online store. These sensors use the electrical property of 

resistance to measure the force (or pressure) exerted by a user. Essentially, they 

are force to resistance transducers: the more pressure exerted, the lower the 

resistance drops. The particular FSRs are made of two main parts: a resistive 

material applied to a piece of film, and a set of digitizing contacts applied to 

another film. The resistive material creates an electrical path between a set of two 

conductors. When force is applied, conductivity increases as the connection 

between the conductors is improved.  

B.2.2 Piezoelectric Sensors  
Piezoelectric (Piezo) sensors take advantage of the piezoelectric effect in which 

mechanical energy is converted to electrical energy. Electrical charge results from 

the deformation of polarized crystals when pressure is applied. These sensors 

respond very quickly and are thus a great choice of drum interfaces which need a 

very quick response time. Piezo sensors detect very small force changes and 

produce a varying voltage when bent. Thus they also can be used to make 

microphones and capture audio signals.  

B.2.3 Accelerometers 
Accelerometers are sensors that measure acceleration using an electrical mass 

spring system. Accelerometers can easily be used to deduce tilt or rotation in three 

axes by wiring three components together. 

                                                 
47 Available at: http://www.interlinkelectronics.com (November 2006) 
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B.3 Actuators 

B.3.1 Motors 
Motors are devices to create motion controlled by the microcontroller. The motors 

discussed in this section create rotary motion, which can be translated into linear 

motion with appropriate system design. There are four basic types of motors: DC, 

gear head, RC servo, and stepper. The BayanBot (discussed in Chapter 9) uses a 

stepper motor [166], so it is the only motor that is described in this section.  

An important fact to remember is that the motors are powered by a 

separate power source than that of the microcontroller. Each motor is rated with 

the maximum amount of voltage which can be supplied before it dies. In general, 

the speed of the motors can be controlled with PWM as discussed above. Stepper 

motors use four digital output pins to control rotation.  

Servo motors are different from other motors in that they don’t turn 

continuously once set into motion. Rather, they move in a series of precise steps, 

as can be inferred from the name. The center shaft of the motor has several 

magnets mounted, while surrounding coils are alternately given current, creating 

magnetic fields which repulse or attract the magnets on the shaft, causing the 

motor to rotate.  

The advantage of stepper motors is the precise control of position, while 

the tradeoff is the slowness in action. However, stepper motors can provide high 

torque at low speeds which make them appropriate for the BayanBot. 

In order to switch directions so the motor can turn clockwise and 

counterclockwise, an H-Bridge is used.  The circuit diagram is given in Figure 

110.   
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Figure 110 - Stepper Motor Circuit Diagram. 

 

B.3.2 Solenoids 
A solenoid [166]  is a special type of motor which creates linear motion. It 

consists of a coil of wire with an iron shaft in the center. When current is supplied 

to the coil, a magnetic field is created and the shaft is displaced. When the current 

is removed, the magnetic field is no longer present and the shaft returns to its 

original position. The time period between supplying current and turning it off 

must be short or the solenoid will overheat and stop working. The greater the 

initial voltage supplied to the solenoid, the greater the immediate displacement, 

resulting in a harder striking motion. Thus it can be used in conjunction with 

Pulse Width Modulation (PWM) to supply variable control of striking power. 

There are two types of solenoids; ones that can pull and ones that push.   

The circuit diagram for operating a solenoid is shown in Figure 111. When 

a coil of wire is moving in a magnetic field, it induces a current in the wire. Thus 

when the motor is spinning near a magnet and then is turned off, the magnetic 

field induces a current in the wire for a brief time. This back voltage can damage 

electronics, especially the microcontroller. To avoid this, a snubber diode is used 

to block the current from going the wrong way. As well, a transistor is used to 
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switch the higher voltage power of the motor to the low voltage power of the 

microcontroller.  
 

.  
Figure 111 - Circuit Diagram for using a Solenoid 

 

 

B.4 Music Protocols 

B.4.1 MIDI  
MIDI is short for Musical Instrument Digital Interface. It is a communication 

protocol, which allows electronic instruments (such as keyboards, synthesizers, 

and musical robots) to connect and interact with each other. Starting in 1983, 

MIDI was developed in cooperation with the major electronic instrument 

companies such as Roland, Yamaha, and Korg. The companies created a standard 

interface, to solve inter-instrument communication problems, and thereby 

generating more sales. Since than, the protocol has evolved to fit the needs of 

professional musicians, as larger amounts of controllers and sounds were 

created.48  

                                                 
48 http://www.midi.com 
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MIDI is transmitted at 31,250 bits per second. Each message has one start 

bit, eight data bits, and one end bit, which means the maximum transmission rate 

would be 3215 bytes per second. When the first bit is set to 1, the byte is a status 

byte. Status byte denotes MIDI commands such as NOTE ON, NOTE OFF, and 

CONTROL CHANGE, and communicates which channel (0-15) to send 

information. The status byte also determines the length of the message; messages 

are generally one, two, or three bytes in length. An example of a common 

message is illustrated below: 

 

 10010000   00111100    01000000 

 Note On   Channel 0 Note #60   Velocity = 64 

 

The NOTE ON command will trigger a MIDI device to turn on a sound. 

The pitch byte will tell the device to play Note 60, which is middle C on a piano 

sound bank. The velocity byte will tell the device how loudly to play the note [32]. 

On a standard MIDI device there are three five-pin ports (IN, OUT, THRU) that 

transmit and receive MIDI information. The IN port receives and processes MIDI 

commands, while the OUT transmits it. The THRU port receives and processes 

MIDI information and transmits the same message through the OUT port. Musical 

Robots receives data through a MIDI IN port, triggering solenoids to fire at 

certain speeds. The MIDI OUT port can be used to send feedback to the 

microchip about timing, force and position of strikes from robots or humans.  

The circuits for MIDI OUT (Figure 112) and MIDI IN (Figure 113) are 

shown below. 
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Figure 112 - MIDI Out Circuit Diagram. 

 

 
Figure 113 - MIDI In Circuit Diagram. 

 
 

B.4.2 OpenSound Control 
A newer music protocol was designed at University of California Berkeley which 

is based on a client/server architecture [199]. Messages are created using a URL 

format allowing for more descriptive names than the hexadecimal names in MIDI. 

An example message could be “/ESitar/thumb/120” or “/ETabla/Dha/56”. Data is 

transmitted using UDP to the correct IP address using Ethernet cables or even 

wireless transmission.  
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C 
C                  

Machine Learning 
Decision Trees, Neural Networks, Support Vector 
Machines 

 

achine learning refers to computer programming which results in a 

machine learning a specialized system with experience. There are 

endless examples of applications of this, including automatic 

automobile transportation, machine-based emotion recognition, and even medical 

assistive technology which enable computers to further aid in the hospital. In the 

audio field, applications range from automatic instrument type recognition [70], to 

automatic beat detection [3] and transcription [16], to voice recognition [201], to 

genre classification [178], to audio-based gesture recognition [86]. 

In this chapter, a variety of machine learning algorithms will be presented. 

Machine learning heuristics are commonly known as classifiers which map 

unlabelled data to discrete classes. The classifiers that will be discussed include: 

ZeroR Classifier, k-Nearest Neighbor, Decision Trees, and Artificial Neural 

Networks.  

In explaining the details of the different algorithms, this paper will refer to 

feature data as the input and classes as the output to the classifiers. Feature 

Extraction is the process of reducing massive amounts of data (from an audio 

source in these examples) to perceptive, compact numerical representation for the 

M
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classifiers to use [114]. Training refers to the process in which the machine takes 

a labeled set of data (with feature data mapped to correct class) and trains the 

classifier. Prediction refers to the process in which the machine takes feature data 

and tries to predict the correct class based on training. 
 

C.1 ZeroR Classifier  
ZeroR is the simplest of classifiers. It is generally used to provide ground truth for 

a data set, as it serves as a worst case scenario. All other algorithms should 

perform better than ZeroR.  

The algorithm counts the number of instances for each class during 

training. When training is complete, (i.e. mode == done) the classifier simply 

predicts for every instance it encounters the class with highest number of 

instances [72]. 

 

C.2 k-Nearest Neighbor  
k-Nearest Neighbor (kNN) is a much more complicated algorithm than the ZeroR 

classifier. During training, the machine stores the N-dimensional feature set along 

with the corresponding class.  

During prediction, the machine takes the test data and calculates the 

distance in the N-Dimensional feature space to every point in the training set. 

These distances are stored in an array Distance() in Marsyas, along with their 

corresponding classes taken from the training points. Next, the algorithm must 

find the k-smallest values in the Distance() array. In finding the minimum values, 

it is important to only go through the Distance() array once (and not k times) for 

speed in real-time applications. Thus another array kMin() will keep track of the 

k-smallest distances at any given time from its one iteration through Distance(). 

kMin() is initialized with the first k-values of Distance(), and a variable kMax 

points to the maximum value of kMin. Then the algorithm starts stepping through 

the entire Distance() array, comparing each value with kMax. If kMax is greater 
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than any value in Distance(), the value is placed in kMin and a new kMax is 

calculated and the pointer adjusted. This process continues to the end of the 

Distance() array. Finally, the kMin array stores the k-smallest values, with their 

appropriate class values. To make a prediction, the algorithm picks the class with 

the most occurrences in the kMin array. [51] 

A pictorial view of a kNN classifier is shown in Figure 114. In this 

example, the feature space is two dimensional and can be represented in an x-, y-

coordinate space. As can be seen, the prediction point would be classified as class 

1 based on the proximity to its “nearest neighbor”. 

 

 
Figure 114 - Illustration of kNN Classifier showing class 1 and class 2 points with 2 features and a 

prediction point which would be classified as class 1 based on the proximity. 

 

C.3 Decision Trees  
A Decision Tree is a machine concept learning algorithm which uses a tree data 

structure. Decision Trees are appropriate for problems that have a fixed set of 

values for their attributes (i.e. Temperature - Hot, Cold, Warm) but the Trees can 

be extended to handle real values (i.e. Temperature - 57,35,53,79). Also, the 

algorithm is robust enough to handle training data with errors or missing attribute 

values. 
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C.3.1 An Example Problem 
In order to explain the details of how a decision tree works an example problem 

will be presented. Suppose it is desired to train a machine to determine whether an 

audio file is traditional Indian Classical music or Western music, using the 

attributes of drum, string, and wind instrument type. If the following training data 

were collected, then the corresponding decision tree would be created as seen in 

Figure 115: 

Tabla, Sitar, Bansuri - Indian Classical Music 

Snare Drum, Sitar, Saxophone = Western Music 

Dholak, Guitar, Saxophone - Western Music 

Dholak, Sitar, Bansuri - Indian Classical Music 

 

 
 

Figure 115 - Illustration of Decision Tree for example problem of classifying Traditional Indian 
Classical Music and Western Music using attributes of drums, strings, wind instrument type. 

 
As seen by Figure 115, the data is sorted from root to leaf node. Each node 

specifies an attribute of the instance. Each branch corresponds to the value of the 

attribute, and the leaf node determines the class of the instance. An advantage of 

Decision Trees over all other classifiers is that a tree structure makes the 

classification scheme readable by the human eye, as seen in Figure 115. 
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C.3.2 ID3 Algorithm 
The ID3 algorithm constructs the tree by determining which attribute should be 

tested at the root of the tree. This is done by a statistical test for each attribute 

which finds the best one for the root node. All descendents of the root are chosen 

in a similar fashion, and thus this algorithm is a greedy algorithm, which does not 

backtrack to earlier decisions. This process is accomplished by calculating 

Information Gain which is quantitative measure of the worth of an attribute. 

It is important to understand Entropy before Information Gain can be explained 

properly. Entropy characterizes the (im)purity of an attribute. Given a collection S, 

with positive(+) and negative (-) examples, Entropy(S) = -p+ _lg(p+)-p- _lg(p-) 

where p+ are the proportion of positive examples and p- is the proportion of 

negative examples. Notice that if p+ = 1 then p-=0 and Entropy(S)=0. On the other 

extreme, if p+=p- then Entropy = 1. This concept can be extended to targets that 

can take c different values by the following equation: Entropy(S) = Pc i=1 -pilg(pi). 

Information Gain is described in terms of entropy by: 

 
 
where Gain(S,A) is the information gain, Values(A) is the set of all values for 

attribute A, and Sv is the subset of values that have value v. In a way, information 

gain can be seen as the expected reduction in entropy caused by partitioning by a 

certain attribute. The greedy algorithm selects the attribute with the highest 

information gain, (so in the example problem, the Drums attribute had the highest 

information gain) removes it from the set of possible attributes (as each attribute 

can be used only once as a node) and then moves to the left node and repeats the 

process. 

A limitation of the ID3 algorithm is that it never selects an attribute for a 

node and then never backtracks to reconsider its choice. This makes the heuristic 

susceptible to converging to a locally (not global) optimal solution. However an 

advantage of the ID3 algorithm is that all the training examples are used for a 



 
2 2 8

statistically-based hypothesis (not incremental on individual training examples) 

which makes it robust to errors in individual or ”noisy” training data. [114] 

 

C.4 Artificial Neural Networks 
A neural network is one of many machine learning techniques used as a 

classification framework. It is modeled after the biological learning process of the 

human brain. In this section the way the human brain’s learning process functions 

will be discussed, followed by how an artificial neural network is set up and how 

it learns based on the brain model. 

 

C.4.1 The Human Brain 
The human brain is composed of a vast network of interconnecting structures 

known as neurons. The interconnections between these myriad of neurons are 

synaptic tissue that ever-change to learn how to solve a specific problem. 

Learning occurs by example, as the synaptic interconnections adjust themselves. 

 

 
Figure 116 - Illustration of neuron in brain: nucleus, cell body, dendrites and axon. 

 
Figure 116 shows the components of a neuron. At the center of this 

structure within the cell body is a nucleus that collects signals from its 

surrounding dendrites. Signals are sent from the neuron through a structure known 

as an axon, which splits into many branches. The synapse, as shown in Figure 117, 

converts the energy from the axon to signals that an interconnecting neuron can 
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process. A neuron sends a spike of electrical activity down its axon, when it 

receives input that is larger than its inhibitory input. Learning occurs by setting 

the influence of the synapse to effect changes of one neuron on another. 

 
Figure 117 - Illustration of synapse converting signals from an axon to a dendrite. 

 

C.4.2 An Artificial Neuron 
The modeling of the human brain’s neural network to an artificial neural network 

is grossly idealistic and is based on our limited knowledge of the fine details of 

the real networks of the brain. However, as seen in the experimentation of this 

report, the artificial neural networks prove to be very successful for certain 

applications. 

Figure 118 shows a simple artificial neuron. The neuron has many inputs 

(dendrites) and an output (axon). The neuron has two modes: training and testing. 

In the training mode, a neuron can be trained to trigger (or not) based on the given 

input from the dendrites. In testing mode, when an exact taught input pattern is 

detected, its trained output becomes the output. However, if the input is not 

exactly the same as one of the training inputs then whether or not the neuron 

triggers is more complicated. 
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Figure 118 - Illustration of an artificial neuron. 

 
There are several algorithms for determining whether a neuron should 

trigger based on a given test input. One technique is the Hamming distance, which 

is similar to a nearest neighbor algorithm. As an example, say a three input neuron 

is taught to output 1 when a, b, c, are 111 and 110 and outputs 0 when input is 000 

and 010. As seen in Table 3, input 001 would output 0 because it has one term 

different from training input 000 and two and three different terms from 110 and 

111. Input 011 remains ambiguous because it is one term different then 010 

(trained to 0) and 111 (trained to 1). 

 
a 0 0 0 0 1 1 1 1 

b 0 0 1 1 0 0 1 1 

c 0 1 0 1 0 1 0 1 

out 0 0 0 0/1 0/1 1 1 1 

 
Table 3 - Input (a, b, c) into artificial neural network with corresponding output using Hamming 

distance rule. 

 

C.4.3 A Weighted Artificial Neuron 
A more complicated neuron has weights on the inputs as seen in Figure 119. The 

weights Wn are multiplied by the value Xn and summed. If this value is greater 

than a certain threshold T then the neuron triggers. 
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Figure 119 - Illustration of a weighted artificial neuron. 

 

Thus the neuron has the ability to change its weights and threshold value in order 

to deal with a data set, making it much more powerful. 
 

C.4.4 Artificial Neural Network Architecture 
There are several types of architectures for neural networks. In this research 

project a feed forward network is used. This allows a signal to only move in one 

direction, from input to output, without any feedback loops. Figure 120 shows a 

diagram of layer of a feed forward neural network. 

 
Figure 120 - Illustration of three layer architecture of an artificial neural network. 
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The neural network consists of three layers: input, hidden, and output. In 

audio analysis the input values are selected feature data. Thus the number of 

neurons in the input layer is precisely equal to the number of feature items. The 

hidden layer activity is determined by the weights and signals of the input layer. 

The output layer activity is determined by the weights and signals of the hidden 

layer. The number of neurons in the output layer is precisely equal to the number 

of classes. For example, if a drum made three sounds A, B, C, then the number of 

neurons in the output layer would be three. [2, 99, 114] 
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D 
D                      

Feature Extraction 
              Reducing Data to a Manageable Size 

 

eature extraction is an important step in machine learning to reduce data 

for the machine to a manageable size. These features are compact 

numerical representations of a signal, which can be easily used for 

classification experiments, regressive analysis, or machine-based comprehension 

of music being performed by the musician. 

F
D.1 Audio-Based Feature Extraction 

Perceptive features can be calculated for each musical sound. These parameters 

are extracted from both the time and frequency domains of a signal. These 

musical features correspond to different characteristics such as pitch, timbre, and 

inharmonicity. [208] In this section, the following features are extracted for each 

signal: ramp time, zero crossing, root mean square, spectral centroid, spectral 

rolloff, spectral flux, linear predictive coding coefficients, mel-frequency cepstral 

coefficients, and subband mean and variance in the wavelet domain.  

D.1.1 Time and Frequency Domain 
Vibrations between approximately 20 and 20,000 Hertz tha are received by the 

human ear can be perceived as sound, created by the oscillations of objects such 

as vocal chords, musical instruments, and speakers. These vibrations are 



 
2 3 4

converted to the realm of digital audio by recording the sound using a microphone, 

which converts the varying air pressure into varying voltage. An analog-to-digital 

converter measures the voltage at regular intervals of time. For all recordings in 

this analysis, there are 44,100 samples per second. This is known as the sampling 

rate (SR). The data the computer stores after the analog-to-digital conversion is 

the sound as a function of time. [164] Figure 121 is a graph of a sound of a Bayan 

as a function of time.  

 

 
Figure 121 - Graph of sound of the Bayan as a function of time. 

 
When one plucks a string or blows air through a tube, it begins a repeating 

pattern of movement, known as an oscillation. If a sound has a repeating pattern 

of movement it has a tone and a pitch (harmonic), which distinguishes it from 

noise (inharmonic). The tone and pitch of the sound can be determined by a sine 

wave with a particular frequency [164]. The cochlea, an organ in the inner ear 

enables humans to detect these frequencies. The cochlea is a spiral shaped organ 

of bone and tissue, with thousands of miniscule hairs that vary in size. The shorter 

hairs resonate with higher frequencies, while the longer hairs resonate with lower 

frequencies. So the cochlea converts the air pressure to frequency information, 

which the brain can use to classify sounds [29].  

The Fourier Transform is a mathematical technique that converts sounds 

represented in the time domain to sound represented in the frequency domain 

[164]. 
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Fourier analysis is based on the important mathematical theorem 

formulated by Joseph Fourier (1768-1830): “Any periodic vibration, however 

complicated, can be built up from a series of simple vibrations, whose frequencies 

are harmonics of a fundamental frequency, by choosing the proper amplitudes 

and phases of these harmonics” [144]. The Fourier Transform takes a periodic 

function of time F(t) and turns it into a summation of cosine and sine waves. A 

periodic function is transformed into the Fourier Series by the equation below: 
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∞
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The term am is the average waveform. Coefficients bm and cm are the weights of 

the cosine and sine terms, which describe different frequencies. [164]  

With the Fast Fourier Transform (FFT), one can find the peaks of a sound, 

in the frequency domain. These peaks are known as modes.  

 

D.1.2 Ramp Time 
Ramp time is the number of samples from the beginning of the sound file to the 

first peak R as shown in Figure 122. This is calculated by rectifying the signal and 

then low pass filtering it (This is how one gets the envelope of a signal). Then the 

highest peak is found in the signal. For all the sound files in this research project, 

it is known that the maximum value of the envelope is the first peak, because 

drum hits have a very strong attack, which always contain more power then the 

rest of the sound.  



 
2 3 6

 

 
Figure 122 - Graph showing where ramptime finds maximum value of first peak and returns number 

of samples to point R. 

D.1.3 Root Mean Square 
A very important feature that is commonly used is root mean square (RMS). The 

RMS value gives an approximation of the variation of energy in the time domain. 

One RMS algorithm involves squaring the input signal to a filter and then 

calculating the square root of the output [208]. It is also common to sum the RMS 

values and then divide by the number of samples to get one average value. This is 

also known as the  average power of a signal. Another way of calculating power is 

to use autocorrelation with zero lag.  

D.1.4 Spectral Centroid 
The spectral centroid is the center of gravity of a signal in the frequency domain. 

It gives an indication of how rich a sound is in harmonics. A simple way to 

calculate this value is shown in the following equation [178, 208] 
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An example of this is shown in Figure 123, which shows one frame of a FFT of a 

signal, with its corresponding centroid. Once again, averaging this value over time 

to give one value to the neural net is common practice.  

 
Figure 123 - Graph showing spectral centroid for one frame of a signal in the frequency domain. [208] 

D.1.5 Spectral Rolloff 
Spectral rolloff, like spectral centroid, is a feature that describes spectral shape. It 

is defined as the frequency Rt below which 85% of the magnitude of the spectrum 

is concentrated. If Mt[n] is the magnitude of the spectrum then the spectral rolloff 

is given by: 

( ) (∑∑
==

=
N

n
t

R

n
t nMnM

t

11

][*85.][ )  

A value for spectral rolloff is calculated for each frame of the Short Time Fourier 

Transform (STFT), and then divided by the number of frames to give one feature 

value for the neural net. [178]  

D.1.6 Spectral Flux 
Spectral Flux measures the amount of local change over time in the frequency 

domain. It is defined by squaring the difference between normalized magnitudes 

in the frequency domain of frame t and t-1. If Nt[n] and Nt[n-1] are defined by the 

normalized magnitude of frame t and t-1, then the spectral flux Ft is given by: 
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In should be noted that magnitudes are normalized by dividing each value in 

every frame by the RMS value of that frame. [178] Ft is calculated for each frame 

and then averaged over time to have one value for spectral flux.  

D.1.7 Zero Crossing  
The zero crossing feature is a simple technique which counts the number of times 

the signal crosses zero in the time domain. This can be useful to give a very rough 

estimation of pitch, or to give a characteristic of the attack part of a signal, by 

finding a number to represent the noise at the beginning of the signal. Figure 124 

shows a simple signal in the time domain with a zero crossing value 8.  

 
Figure 124 - Graph showing zero crossing feature finding eight points where time domain signal 

crosses zero. 

 

D.1.8 Linear Predictive Coding  
Linear predictive coding (LPC) produces an estimation )(nx for a sample value 

x(n) as a linear combination of previous sample values. This is shown by: 
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where ak are the coefficients of the predictor. The z-transform of this equation is 

given by: 
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Thus, using LPC coefficients, a sound can be represented in terms of coefficients 

to an IIR filter. [33] Matlab has a built in function lpc which calculates the L lpc 

coefficients given a signal and a number L. These coefficients can have an 

imaginary component, thus the magnitude can be calculated and stored.   

D.1.9 Mel-Frequency Cepstral Coefficients 
Mel-frequency Cepstral Coefficients (MFCC) are the coefficients of the Fourier 

transform representation of the log magnitude spectrum. After the STFT is 

calculated, FFT bins are grouped and smoothed according to mel-frequency 

scaling. 13 coefficients are created to represent each frame. [100] Each of the 

thirteen coefficients is averaged over time to give an array of length thirteen.  

D.1.10 Wavelet Features 
The wavelet transform provides a temporal and frequency representation of a 

signal. This is useful because often a certain frequency component occurs once at 

a certain instance in time, and one needs to calculate the frequency and time of 

this occurrence.  The wavelet transform uses a filter bank framework as shown in 

Figure 125. The filter bank decomposes a signal into a low resolution 

approximation signal and detail signals, realized by a high pass and low pass FIR 

filter pair. The filter pairs used in this research is a Daubechies pair of length eight. 

[44] The filtered signals are down-sampled by 2 ensuring that the length of the 

original signal is preserved. The low resolution approximation can be filtered 

again to yield another signal pair. This filter process can be repeated K times 

when the signal is of length 2K (zero padding is used in this feature to ensure a 

multiple of 2). Thus there will be K detail signals and one low resolution 

approximation. The majority of the detail signals are sufficiently small in 

magnitude that they can be ignored in compression. [102] Matlab Uv_Wave 

Toolbox (developed by University of Vigo) is used in this research to translate 
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signals to the wavelet domain. A feature is extracted from the wavelet domain by 

taking the K average values for each sub band.  [179] Another feature is 

calculated by finding the variance from the mean for each sub band.  

 
Figure 125 - Diagram of a four level filter bank wavelet transform using FIR filter pairs H0 (low pass) 

and H1 (high pass). 

D.1.11 Subband Analysis 
Sub band analysis techniques are also employed to determine energy in specific 

bands. There are four bands: 0-200 Hz, 200-1000 Hz, 1000-3000 Hz, 3000-20,000 

Hz. Linear phase FIR filters of length 71 are designed to separate the signals into 

four separate subbands [102]. In some experiments, the energy in each band is 

measured during the attack phase, which gives a rough estimation as to what 

modes of the sound are being excited.     
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E 
E               

Computer Music Languages  
               Programming Languages for Music DSP  

 

his chapter introduces the computer music programming languages used 

in this dissertation. A brief synopsis of the strengths and functionality of 

each language are described.  

 

T
E.1 STK Toolkit 

The Synthesis ToolKit 49  (STK) [33] is a set of open source audio signal 

processing and algorithmic synthesis classes written in the C++ programming 

language led by Professor Perry R. Cook and Professor Gary Scavone, while they 

were at Stanford University. STK was designed to facilitate development of music 

synthesis and audio processing software, with an emphasis on cross-platform 

functionality, real-time control, ease of use, and educational example code. The 

Synthesis ToolKit is particularly novel because of its collection of physical 

models of instruments. Physical models model the time domain physics of the 

instrument and take advantage of the one-dimensional paths in many systems (ex. 

strings, narrow pipes) replacing them with delay lines (waveguides) [33]. 

                                                 
49 http://ccrma.stanford.edu/software/stk/ 
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E.2 ChucK 
ChucK 50  [189] is a concurrent, strongly-timed audio programming language 

developed under Professor Perry R. Cook by Ge Wang and the SoundLab team at 

Princeton University. Programmable on-the-fly, it is said to be strongly-timed 

because of its precise control over time. Concurrent code modules that 

independently process different parts of the data can be added during runtime, and 

precisely synchronized. ChucK has STK modules imported directly into the 

language. It has a real-time architecture making it easy to prototype performance 

applications for controllers and robotics. ChucK is freely available online.  

 

E.3 Marsyas 
Marsyas 51  [177] is a software framework for rapid prototyping and 

experimentation with audio analysis and synthesis with specific emphasis on 

music signal and music information retrieval. It was developed by Professor 

George Tzanetakis and his team at University of Victoria. It is based on a data-

flow architecture that allows networks of processing objects to be created at run-

time. A variety of feature extraction algorithms both for audio and general signals 

are provided. In addition Marsyas provides integrated support for machine 

learning and classification using algorithms such a k-nearest neighbor, Gaussian 

mixture models and artificial neural networks. Marsyas is freely available online. 

 

E.4 Pure data (pd) 
Pure data52 (pd) is a real-time graphical programming environment for audio, 

MIDI and video signal processing, developed by Professor Miller S. Puckette at 

University of San Diego. Pd’s visual environment allows for users who do not 

have a background in computer science with a suitable structure to learn how to 

                                                 
50 http://chuck.cs.princeton.edu/ 
51 http://Marsyas.sourceforge.net 
52 http://puredata.info/ 
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understand signals. Advanced users can write external classes which can be used 

to extend the capabilities of the pre-written code. Pure-data is freely available 

online.    

E.5 MAX/MSP 
MAX/MSP53 is a commercially available graphical environment for audio, video 

and multimedia signal processing. Developed over the signal processing 

architecture of pure-data, CEO David Zicarelli and his team at Cycling ’74 in San 

Francisco have created a new paradigm for GUI-based new media programming.   

                                                 
53 http://www.cycling74.com/ 
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7  2, 3, 5, 6, 9, 10, 12, 13, 14, 16, 19, 21, 26, 31, 32 

8  5, 8, 10, 11, 14, 16, 17, 18, 21, 22 

9  7, 9, 10, 12, 20 

10  5, 9, 10 

11  9, 10, 12, 15, 19 

12  6 

13  13, 30 

14  17, 18 
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10, 11, 12, 13, 14, 
16, 17, 18, 19, 22, 
23, 24, 26, 30, 31, 
32, 33 

5, 9, 10, 12, 14, 
16, 20, 24  

13, 14, 15, 16, 17, 18, 
19, 25, 27, 28, 29, 30 

Music 1, 2, 3, 4, 5, 6, 8, 9, 
10, 11, 12, 13, 19, 
22, 23, 24, 26, 30, 
31, 32, 33 
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14, 20, 24 

13, 14, 15, 16, 19, 25, 
27, 28, 29, 30 

Electrical 
Engineering 
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10, 11, 12, 13, 14, 
16, 19, 22, 23, 24, 
26, 30, 31, 32, 33 

5, 7, 9, 10 12, 
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13, 14, 16, 19, 30 

Mechanical 
Engineering 

7, 9, 10 7, 9, 10, 20  

Psychology 17, 18  17, 18 
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