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ABSTRACT 
This paper describes the design and experimentation of a Kalman 
Filter used to improve position tracking of a 3-D gesture-based 
musical controller known as the Radiodrum. The Singer dynamic 
model for target tracking is used to describe the evolution of a 
Radiodrum’s stick position in time. The autocorrelation time 
constant of a gesture’s acceleration and the variance of the gesture 
acceleration are used to tune the model to various performance 
modes. Multiple Kalman Filters tuned to each gesture type are run 
in parallel and an Interacting Multiple Model (IMM) is 
implemented to decide on the best combination of filter outputs to 
track the current gesture. Our goal is to accurately track 
Radiodrum gestures through noisy measurement signals.  
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1. INTRODUCTION 
Intention is a key aspect of traditional music performance. The 
ability for an artist to reliably reproduce sound, pitch, rhythms, 
and emotion is paramount to the design of any instrument. With 
the introduction of acoustically quite electronic musical 
controllers, intention is determined by the accuracy of the sensor 
technology and engineering of the gesture capturing system. 
Most controllers are susceptible to a fair amount of unpredictable 
electromagnetic noise either from with in the sensing system itself 
or from the surrounding environment. An accurate track of the 
gesture data coming from a multi-dimensional performance based 
sensing system is useful for many applications. Accurate 
estimation of the true gesture provides a performer with greater 
control of the virtual space. The Tongue ‘n’ Groove ultrasound 
based controller discusses this need for increased accuracy of data 
[8]. Furthermore, recognition in gesture based conducting systems 
such as [9, 11, 12], would benefit from an improved gesture track. 
The motivation for this paper is to process the gesture data 

measured by our sensing system and reduce, if not completely 
remove all influence of system and environmental noise on the 
gesture signals. With an understanding of our system’s sensor 
noise and models of the various gesture motion types expected, a 
filter can track our multi-dimensional gesture signal through the 
noisy raw signal. The Kalman Filter is an excellent candidate for 
such a problem.  
A similar problem was addressed in data correction for a system 
that tracked ‘air percussion’ gestures [7]. In this work the author 
uses LPC prediction, with a window of 30 samples, to predict the 
next sample and smoothes the measured data by averaging with 
the predicted data point. Our work differs in that we use a model-
based approach to predict the next sample and the weighting 
between the measured and predicted data point is conditional on 
all previous measurements.  
This paper describes the design of Kalman Filters to improve the 
tracking of the Radiodrum system. Section 2 describes the 
Radiodrum system, section 3 discusses the dynamic model used to 
describe the motion of a drumstick and section 4 describes a 
measurement model of the Radiodrum system. Section 5 
describes the 3 Kalman Filters used to track each gesture type 
while section 6 discusses the implementation and results of an 
Interactive Multiple Model used to combine our Kalman Filter 
outputs. Section 7 contains conclusions and future work. 

2. THE RADIODRUM 
Also often referred to as the Radio Baton, The Radiodrum is a 3 
dimensional musical controller that tracks the x, y, and z position, 
z velocity and detects surface whacks of one or two drum sticks 
over its surface. Originally designed and built at Bell Laboratories 
in the 1980’s to be used as a 3 dimensional mouse, the Radiodrum 
has now evolved to become a pioneering instrument in computer 
music performance [6, 10].  

The current Radiodrum system developed by Ben Neville [1] uses 
an audio interface to generate the emitted carrier signals and to 
acquire the antenna signals coming off the Radiodrum surface. In 
Max/MSP, the four antenna signals are demodulated and 
translated into x, y, and z positions. In our work we will limit 
ourselves to a single stick system. The results of this research can 
easily be extended to work with a second stick. Figure 1 shows a 
2 second record of the x position of the Radiodrum stick moving 
slowly over the surface. Here, the undesirable effects of the noise 
are obvious. At the noisiest part of the signal, the exact stick 
position in the x direction is ambiguous in the range of 20-30cm. 
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Figure 1: Raw x position of Radiodrum signal 

3. DYNAMICAL SYSTEM FOR 
RADIODRUM GESTURES 
Motion of a Radiodrum stick can be described by a linear 
dynamic model consisting of a state vector X(k) and a state 
transition matrix Ф(k). Random disturbances to the state due to 
the randomness of human motion can be modeled by a white 
Gaussian noise process, W(k), described by its covariance matrix, 
Q(k). Equation 1 describes the state vector containing the 
position, velocity, and acceleration of a Radiodrum stick in all 
three dimensions. 
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Equation 1: State Vector 

Equation 2 describes how the system’s state evolves from one 
time instant to the next. 
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Equation 2: Linear Dynamic Model 

Ф(k) and Q(k) are obtained using the Singer model for 
maneuvering targets described in section 3.1. 

3.1 The Singer Dynamic Model 
The dynamic model for the Radiodrum system was inspired by 
extensive work already published in the field of missile tracking 
for military applications. Tracking of a Radiodrum stick is 
analogous to tracking a missile through the earth’s atmosphere 
using radar. The Singer model for maneuvering targets provides a 
intuitive parameterized way to specify the state transition matrix, 
Ф(k), and the dynamic disturbance covariance matrix, Q(k) [2].  
The Singer model takes into account a dynamic acceleration 
disturbance noise process that is not necessarily white. Physically, 
this means that a force may be applied to the stick over a certain 
window of time to maneuver it. The correlation coefficient τ 
describes to what degree the noise is correlated and σ2 is the 
variance of the acceleration over a gesture. Equation 3 shows the 
autocorrelation of the acceleration. T is the sampling period. In 
our case 1/3000 sec. 
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Equation 3: Autocorrelation of acceleration 

The Ф(k) matrix, shown in Equation 4, describes how the state of 
a single dimension of the Radiodrum is updated over consecutive 
time instants.  
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Equation 4: Transition matrix, Ф(k) 

Since the random disturbance matrix W(k) must be white the 
random acceleration component is processed through a whitening 
filter giving rise to a Q(k) matrix of the form in Equation 5. 
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Equation 5: Covariance of disturbance matrix 

The q values are functions of τ, the correlation time and T, the 
sampling period. For the exact derivation of Q(k) see [3].

4. RADIODRUM MEASUREMENT 
MODEL 
A measurement model describes the relationship between the 
known measurements and the unknown parameters of a system. 

)()()()( kVkXkHkZ +=  

Equation 6: Linear Measurement Model 

Where Z(k) denotes the measurement vector, H(k) denotes the 
observation matrix, X(k) denotes the unknown parameters and 
V(k) the measurement noise. The matrix R(k) is defined as the 
covariance of V(k). 
In our case, the measurements correspond directly with x, y, z in 
the state vector therefore H(k) is simply a (3,9) matrix with zeros 
except in the entries (1,1), (2,4), and (3,7). The covariance of the 
x, y, and z position noise was measured throughout the entire 
playable range of the Radiodrum’s 3-dimensional surface. Since 
the noise is position dependant, more specifically, increasing with 
height of the stick, an averaged sum of all covariance calculations 
over the surface was used.  

5. KALMAN FILTERING OF THE 
RADIODRUM GESTURES 
The Kalman Filter is an optimal recursive linear estimator. With 
knowledge of the system and measurement devices, all 
measurements are processed to estimate the desired unknown 
parameters. The Kalman Filter processes the measurements in a 
linear fashion minimizing the error between the estimated 
parameters and the actual parameters [4]. The Kalman Filter 
outputs a filtered estimate of the state of the system. This estimate 
is a weighted combination of the measurements and the predicted 
state provided by the dynamic model. For a complete derivation 
of the Kalman Filter, see [4]. 
This initial work on Kalman Filtering of Radiodrum gestures was 
implemented and tested offline in Matlab.   



5.1 Definition of Gesture Types 
A single Kalman Filter, using a specific tuned dynamic model for 
each dimension cannot successfully track the entire range of 
gestures that a performer can offer. To cover the breadth of 
acceleration variances and time correlations, three different 
dynamic models were used. These three models correspond to 
three modes of gesture: Slow Move, Fast Move, and Whack. The 
Slow Move and Fast Move gestures are defined as slow and fast 
varying stick movements over the range of the surface 
respectively. The Whack gesture corresponds to the striking of the 
stick upon the surface of the drum. In whack mode the stick 
experiences the highest accelerations and decelerations, therefore 
smallest acceleration correlation (impulsive) with greatest 
variance.  

5.2 Tuning of model parameters 
A variety of gestures, representing each mode were tracked using 
the three Kalman Filters. Table 1 shows the x, y, and z values of 
the model parameters tuned for each gesture mode. 
 

Gesture 
Mode 

τ (x, y, z) (s) 

T=1/3000 sec 

σ2 (x, y, z) (m/s2) 

Slow Move 100*T, 100*T,100*T 0.1, 0.1, 100 

Fast Move 65*T, 65*T, 65*T  800, 800, 80000 

Whack 100*T, 100*T, 2*T 70, 70, 1e7 

Table 1: Singer Model Parameters for Gesture Modes 

As expected the decrease in τ from Slow Move to Fast to Whack 
indicates the movement getting more impulsive and intuitively, 
the variance of the acceleration increases as the gestures get more 
erratic. In all cases the z variance is greater than the x and y. This 
is because performers tend to move more impulsively in the z 
direction. For the case of the Whack, an extreme variance models 
the z acceleration while lower variances model the x and y 
accelerations. Whacking requires very little movement in the x 
and y directions.  
 

 
Figure 2: Raw unfiltered Fast Move gesture 

Figure 2 and Figure 3 show a 4 second record of the raw and 
filtered Radiodrum position track of a fast gesture in 3 dimensions 
respectively. A Kalman Filter tuned to the Fast Move mode was 
used. This gesture was accurately tracked through noisy 
measurements with improved accuracy. Next we describe how the 

3 models are combined to obtain a single estimate of the current 
gesture track. 

 
Figure 3: Kalman filtered Fast Move gesture 

6. AN INTERACTING MULTIPLE MODEL  
The Interacting Multiple Model (IMM) algorithm provides a 
single output of the estimated state of a dynamic system from a 
combination of subfilter outputs, each of which are tuned to a 
specific dynamic model. The weighting of each model’s state 
estimate in the final combined state estimate is proportional to 
each model’s likelihood function at the current iteration of the 
algorithm. The likelihood of each model, j is calculated from the 
normal distribution shown in Equation 7 [5]. 
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 Equation 7: Model Likelihood 

Where z(k) are the current measurements, are the current 
model’s predicted measurements, and S

(k)z
j∧

j is the covariance of the 
model’s innovations sequence, the difference between the 
predicted measurements and actual measurements.  
Inputs to each model’s filter at the start of an iteration, k, is a 
weighted combination of the outputs of each model’s state 
estimate, Xj(k-1), and covariance, Pj (k-1) from the previous 
iteration, k-1. Weighting of each model j’s state estimate and 
covariance is governed by model j’s likelihood, Λj and model j’s 
switching probability to the current model. Since a Markovian 
process governs model transition, a model transition probability 
matrix can be defined. 

6.1 IMM Results for the Radiodrum 
We use 3 models to describe the 3 modes of performance, 
differing by their dynamic noise covariance matrix, Q.  
 

 
Figure 4: IMM Filtered Radiodrum signal of slow gesture 



Figure 4 shows the same record of data as Figure 1. The green 
line represents the raw unfiltered data obtained from the 
Radiodrum. The black line running through the green plot shows 
the filtered output of the 3 model IMM. The filtering has reduced 
the maximum x position uncertainty of this gesture from 10 cm’s 
to a few millimeters. 
Figure 5 plots the raw and corresponding black IMM filtered z 
track for a slow to fast gesture transition. Although a reasonable 
position noise reduction from accuracy of 6cm to 1cm is 
observed, the IMM has trouble estimating the best track for the 
slow gesture up to sample 3400. The Fast Move and Whack 
model’s outputs are being favoured over the Slow Move model. 
An IMM favouring the slow model up to sample 3400 would give 
a position accuracy of a few millimeters. Since the Fast Move and 
Whack models for the z axis have such large variances, the Slow 
Move model’s distribution gets ‘swallowed’ and never becomes 
more likely over the other models.  

 
Figure 5: IMM Filtered Radiodrum signal, slow to fast gesture 

Any tuning of the current IMM will not give a better track for the 
z position. A new approach is needed to get a tighter track of z 
position. Figure 6 exhibits another problem. 

 
Figure 6: Radiodrum signal noise burst 

Here a burst of noise, independent of the gesture, enters the 
system. The IMM switches from the Slow to the Whack model 
and closely tracks the noise as if it were gesture. A way is needed 
to distinguish between noise bursts and gesture. 

7. CONCLUSIONS AND FUTURE WORK 
Using the Singer model for maneuvering targets, a set of 3 
dynamic models, describing 3 modes of Radiodrum gesture were 
designed. Along with a single measurement model, the states of 
the 3 models are estimated using 3 unique linear Kalman Filters. 
Using an Interacting Multiple Model, the 3 Kalman Filter outputs 
are combined to give a single estimate of the state, and to provide 
input to the Kalman Filters at the next iteration. The IMM 

performs well when filtering x and y position at various speeds. 
However, due to the large variances of the z components for the 
Fast Move and Whack gestures, the Slow Move model cannot 
achieve adequate separation in the z direction to be effective. 
Furthermore, the IMM cannot distinguish between noise bursts 
and impulsive gesture.  
Future work includes filtering each coordinate separately and 
providing input to the dynamic model in the form of acceleration 
impulse and stick height. This may provide adequate separation of 
the distributions of our 3 models and alleviate the problem of 
falsely tracking noise bursts as whacks. Finally, a Max/MSP 
based Kalman Filter external will be developed and incorporated 
into the existing Radiodrum software [1], for real-time 
performance evaluation. 
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