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ABSTRACT

Recording engineers, mixers and producers play im-
portant yet often overlooked roles in defining the sound of
a particular record, artist or group. The placement of dif-
ferent sound sources in space using stereo panning infor-
mation is an important component of the production pro-
cess. Audio classification systems typically convert stereo
signals to mono and to the best of our knowledge have
not utilized information related to stereo panning. In this
paper we propose a set of audio features that can be used
to capture stereo information. These features are shown
to provide statistically important information for a non-
trivial audio classification task and are compared with the
traditional Mel-Frequency Cepstral Coefficients. The pro-
posed features can be viewed as a first attempt to capture
extra-musical information related to the production pro-
cess through music information retrieval techniques.

1 INTRODUCTION

Starting in the 1960s the recording process for rock and
popular music moved beyond the convention of recreat-
ing as faithfully as possible the illusion of a live perfor-
mance. Facilitated by technological advances including
multi-track recording, tape editing, equalization and com-
pression, the creative contributions of record producers
became increasingly important in defining the sound of
artists, groups, and styles [4]. Although not as well known
as the artists they worked with, legendary producers in-
cluding Phil Spector, George Martin, Brian Eno and Quin-
cy Jones changed the way music was created.

So far, research in music information retrieval has largely
ignored information about the recording process, focusing
instead on capturing information about pitch, rhythm and
timbre. A common methodology is to extract features,
quantifiable attributes of music signals, from recordings,
then to classify these features into distinct groups using
machine learning techniques. This two-part process has
enabled tasks such as automatic identification of genres,
albums and artists.

The influence of the recording process on automatic
classification has been acknowledged and termed the al-
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bum effect. The performance of artist identification sys-
tems degrades when music from different albums is used
for training and evaluation [7]. Therefore, the classifi-
cation results of such systems are not based entirely on
the musical content. Various stages of production of the
recorded artifact, including recording, mixing, and mas-
tering, all have the potential to influence classification.
This has led to research which attempts to quantify the
effects of production on acoustic features. By detecting
equalization curves used in album mastering, it is possible
to compensate for the effects of mastering so that multi-
ple instances of the same song on different albums can be
better compared [3]. We believe that other information re-
lated to the recording process, specifically mixing, is an
important component of understanding modern pop and
rock music and should be incorporated rather than being
removed from music information retrieval systems.

The goal of this paper is to explore stereo panning in-
formation as an aspect of the recording and production
process. Stereo information has been frequently utilized
for source separation purposes [2, 9]. However, to the best
of our knowledge, it has not been used in music classifica-
tion systems for audio signals. In this paper we show that
stereo panning information is indeed useful for automatic
music classification.

2 STEREO PANNING INFORMATION
EXTRACTION

In this section we describe the process of calculating stereo
panning information for different frequencies based on the
short-time Fourier transform (STFT) of the left and right
channels. Using the extracted Stereo Panning Spectrum
we propose features that can be used for classification.

2.1 Stereo Panning Spectrum

Avendano [2] describes a frequency-domain source iden-
tification system based on a cross-channel metric called
the panning index. We use the same metric as the basis
for calculating stereo audio features for classification. For
the remainder of the paper the term Stereo Panning Spec-
trum (SPS) is used instead of the panning index as we feel
it is a more accurate term. The SPS holds the panning
values (between -1 and +1 with 0 being center) for each



frequency bin.
The derivation of the SPS assumes a simplified model

of the stereo signal. In this model each sound source is
recorded individually and then mixed into a single stereo
signal by amplitude panning. Stereo reverberation is then
added artificially to the mix. The basic idea behind the
SPS is to compare the left and right signals in the time-
frequency plane to derive a two-dimensional map that iden-
tifies the different panning gains associated with each time-
frequency bin. By selecting time-frequency bins with sim-
ilar panning values it is possible to separate particular sound
sources [2]. In this paper we utilize the SPS directly as the
basis for extracting statistical features without attempting
any form of source separation. Our SPS definition directly
follows Avendano [2].

If we denote the STFT of the left,right signals xl(t), xr(t)
for a particular analysis window as Xl(k), Xr(k), where
k is the frequency index we can define the following sim-
ilarity measure:

ψ(k) = 2 ∗ |Xl(k)X∗
r (k)|

|Xl(k)|2 + |Xr(k)|2
(1)

where ∗ denotes complex conjugation. For a single amp-
litude panned source this similarity function will have a
value proportional to the panning coefficient α in those
time frequency regions where the source has energy. More
specifically if we assume the sinusoidal energy-preserving
panning law: ar =

√
1− a2

l then:

ψ(k) = 2α
√

1− α2 (2)

If the source is panned to the center (i.e α = 0.7071) then
the function will attain its maximum value of 1, and if
the source is completely panned to either side the function
will attain its minimum value of zero. The ambiguity with
regards to the later direction of the source can be resolved
using the partial similarity measures:

ψl =
|Xl(k)X∗

r (k)|
|Xl(k)|2

, ψr =
|Xr(k)X∗

l (k)|
|Xr(k)|2

(3)

and their difference:

∆(k) = ψl − ψr (4)

where positive values of ∆(k) correspond to signals panned
towards the left and negative values correspond to signals
panned to the right. Thus we can define the following
ambiguity-resolving function:

∆̂(k) =


+1, if ∆(k) > 0
0, if ∆(k) = 0
−1, if ∆(k) < 0

(5)

Shifting and multiplying the similarity function by ∆̂(k)
we obtain the Stereo Panning Spectrum (or panning index)
as:

SPS(k) = [1− ψ(k)] ∗ ∆̂(k) (6)
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Figure 1. Stereo Panning Spectrum of “Hell’s Bells” by
ACDC (approximately 28 seconds).
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Figure 2. Stereo Panning Spectrum of “Supervixen” by
Garbage (approximately 28 seconds)

Figure 1 shows a visualization of the Stereo Panning
Spectrum for the song “Hell’s Bells” by ACDC. The visu-
alization is similar to a Spectrogram with the X-axis corre-
sponding to time, measured in number of analysis frames,
and the Y-axis corresponding to frequency bin. No pan-
ning is represented by gray, full left panning by black and
full right panning by white. The songs starts with four
bell sounds that alternate between slight panning to the
left and to the right, visible as changes in grey intensity.
Near the end of the first 28 seconds a strong electric gui-
tar enters on the right channel, visible as white. Figure
2 shows a visualization of the SPS for the song “Super-
vixen” by Garbage. Several interesting stereo manipula-
tions can be observed in the figure and heard when lis-
tening to the song. The song starts with all instruments
centered for a brief period and then moves them to the left
and right creating an explosion like effect. Most of the
sound of a fast repetitive hi-hat is panned to the right (the
wide dark bar over the narrow horizontal white bar) with
a small part of it panned to the left (the narrow horizontal
white bar). Near the end of the first 28 seconds the voice
enters with the a crash cymbal panned to the left, visible
as the large black area.

2.2 Stereo Panning Spectrum Features

In this section we describe a set of features that summa-
rize the information contained in the Stereo Panning Spec-
trum. The main idea is to capture the amount of panning in
different frequency bands as well as how it changes over
time. We define the Panning Root Mean Square for a par-



ticular frequency band as:

Pl,h =

√√√√ 1
h− l

h∑
k=l

[SPS(k)]2 (7)

where l is the lower frequency of the band, h is the high
frequency of the band, and N is the number of frequency
bins. By using RMS we only consider the amount of pan-
ning without taking into account whether it is to the left
or right. We consider the following 4-dimensional feature
vector corresponding to an analysis window t:

Φ(t) = [Ptotal(t), Plow(t), Pmedium(t), Phigh(t)] (8)

The PRMS values correspond to overall panning (0–22050
Hz), and panning for low (0–250 Hz), medium (250–2500
Hz) and high frequencies (2500–22050 Hz) respectively.

To capture the dynamics of panning information we
compute a running mean and standard deviation over the
past M frames:

mΦ(t) = mean[Φ(t−M + 1), ..,Φ(t)] (9)
sΦ(t) = std[Φ(t−M + 1), ..,Φ(t)] (10)

This results in a 8-dimensional feature vector at the same
rate as the original 4-dimensional feature vector. For the
experiments described in the next section M is set to 40
corresponding to approximately 0.5 seconds. To avoid any
duration effects on classification we only consider approx-
imately the first 30 seconds of each track, resulting in a
sequence of 1000 8-dimensional feature vectors for each
track. The tracks are stereo, 16-bit, 44100 Hz sampling
rate audio files and the STFT window size is set to 1024
samples. The sequence of feature vectors is collapsed to a
single feature vector representing the entire track by tak-
ing again the mean and standard deviation across the first
30 seconds resulting in the final 16-dimensional feature
vector for each track.

3 EXPERIMENTS

In order to evaluate the effectiveness of the proposed fea-
tures we considered two non-trivial tasks. As a sidenote,
using the proposed features it is trivial (although quite use-
ful) to detect mono recordings directly converted to stereo
without remastering.

The first classification task we consider is distinguish-
ing two collections of rock music, one from the 1960s
and another from the 1990s. In genre terms, these can
be loosely categorized as ‘garage’ and ‘grunge.’ Both of
these styles would be classified to the top-level genre of
rock. To isolate the effects of recording production, we
only included albums which had as their main instrumen-
tation the standard rock ensemble of electric guitar, elec-
tric bass, drums and vocals. Albums with an excess of
keyboards or experimental studio techniques, late 1960s
Beatles for example, were excluded. We used 227 tracks
from the 1960s and 176 tracks from the 1990s. Example

Garage/Grunge ZeroR NBC SMO J48
SPSF 56.4 77.2 81 84.2
SMFCC 56.4 74. 6 76.7 71.6
SPSF+SMFCC 56.4 82.7 83.7 83.2

Table 1. Classification accuracies for Garage/Grunge

Acoustic/Electric ZeroR NBC SMO J48
SPSF 51.3 99.4 99.7 99.1
SMFCC 51.3 71.8 79.4 68.4
SPSF+SMFCC 51.3 98.5 99.1 99.1

Table 2. Classification accuracies for Acoustic/Electric
Jazz

‘garage’ groups include The Byrds, The Kinks and Buddy
Holly. Example ‘grunge’ groups include Nirvana, Pearl
Jam and Radiohead.

The second classification task we consider is distin-
guishing electric jazz from acoustic jazz. Both of these
styles would be classified to the top-level genre of jazz.
Acoustic jazz tends to have relatively pronounced pan-
ning of the solo instruments (saxophone and trumpet) that
doesn’t vary over time. We used 175 electric jazz tracks
and 184 acoustic jazz tracks. Example electric jazz groups
include: Weather Report, Return to Forever, Medeski, Mar-
tin and Wood, and Mahavishnu Orchestra. Example acous-
tic jazz groups led by artists include: Miles Davis, John
Coltrane, Lee Morgan and Branford Marsalis.

Tables 1, 2 show the classification accuracy results for
the Stereo Panning Spectrum Features and compares them
with the results obtained from stereo Mel-Frequency Cep-
strum Coefficients (MFCC) (basically the MFCC of the
left and right channels concatenated) as well as their com-
bination for the two tasks. MFCCs are the most com-
mon feature front-end for evaluating timbral similarity [1].
The accuracies are in percentages and are computed us-
ing stratified 10-fold cross-validation. The ZeroR clas-
sifier is a simple baseline, NBS corresponds to a simple
Naive Bayes classifier, SMO corresponds to a linear Sup-
port Vector Machine trained with Sequential Minimal Op-
timization and J48 is a decision tree. More information
about these representative classifiers can be found in [8]
or any pattern recognition textbook. As can be seen the
Stereo Panning Spectrum Features (SPSF) perform well
and for the acoustic vs electric jazz task achieve almost
perfect classification. As a sidenote the classification ac-
curacy of mono MFCC were almost identical to the stereo
MFCC therefore were not included in the Tables.

It is important to note that the proposed features only
capture stereo information and are not influenced by any
spectral content or amplitude dynamics. For example ap-
plying any amplitude changes to both channels doesn’t
change their values and the spectrum could be completely
altered without changing the features as long as the changes
are proportional to the panning coefficients.
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Figure 3. Histogram of mean overall panning for Acous-
tic Jazz (Left) and Electric Jazz (Right)

Gr/Ga/Aj/Ej ZeroR NBC SMO J48
SPSF 29.8 73.6 81 76.5
SMFCC 29.8 56.4 65.9 52.3
SPSF+SMFCC 29.8 75.2 87.4 79.9

Table 3. Classification accuracies for four styles

Figure 3 shows the histograms of a single feature: the
mean total RMS panning for acoustic jazz (left) and elec-
tric jazz (right). As can be seen acoustic jazz has lower
but more consistent panning values whereas electric jazz
has more pronounced and spread panning values.

Table 3 shows the classification results for all four styles
combined. Although somewhat artificial as a task, this
provides information about the robustness of the proposed
features as well as the value of combining the standard
MFCC features with the proposed Stereo Panning Spec-
trum Features.

Researchers interested in replicating these experiments
can obtain the complete lists of tracks and albums for both
of these tasks by contacting the authors via email. The
code for the calculation of the SPS features has been inte-
grated into Marsyas 1 [6], an open source framework for
audio processing with specific emphasis on Music Infor-
mation Retrieval. The machine learning part of the exper-
iments were conducted using Weka 2 [8].

4 CONCLUSIONS AND FUTURE WORK

A new feature set based on the Stereo Panning Spectrum
was proposed and shown to be effective for two non-trivial
audio classification tasks. It has been argued that the ap-
proach of modeling timbral similarity using MFCC has
reached a “glass ceiling” [1]. We believe that information
related to the recording process such as the stereo panning
information used in this paper can help future audio MIR
systems escape this ceiling. More detailed features related
to stereo information than the ones proposed in this paper
can be envisioned. For example, by clustering the panning
values it might be possible to determine how many tracks
were used in the mix.

We are also interested in exploring other aspects of the
studio production process for MIR purposes. Examples
include equalization, compression, and effects including
reverberation and delay. One of the authors is a profes-
sional studio recording engineer who teaches recording

1 http://marsyas.sourceforge.net
2 http://www.cs.waikato.ac.nz/ml/weka/

techniques. We are planning to develop visualization and
editing tools that can help reverse-engineer the stereo mix-
ing of audio recordings for pedagogical purposes.

Engineers communicate about mixing with a particular
lexicon of qualitative terms. A good example comes from
an interview with Mix Magazine where Dave Pensado de-
scribes one of his mixes as having “massive club bottom,
hip hop sensibility in the middle, and this real smoothed-
out, classy, Quincy Jones-type top.” [5]. Our hope is to
eventually be able to translate this type of discussion into
a more quantitative domain.
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